
Material
& Structure
Analysis Suite

Transvalor / ENSMP
Centre des Matériaux

B.P. 87 – 91003 EVRY Cedex
France

Northwest Numerics, Inc.
641 Arnold Road
Coventry, RI 02816
USA

Z-set is distributed by

http://www.zset-software.com
support@zset-software.com

User commands
Version 8.5

Neither Northwest Numerics and Modeling, Inc., the Ecole des Mines de Paris nor ONERA assume
responsibility for any errors appearing in this document. Information provided in this document is
furnished for informational use only, is subject to change without notice, and should not be construed
as a commitment by Northwest Numerics and Modeling, Inc.
Z-set, ZebFront, Z-mat and Zebulon are trademarks of Northwest Numerics and Modeling, Inc.

c©Ecole des Mines de Paris, Northwest Numerics and Modeling, Inc., and ONERA, 1998-2013.

Proprietary data. Unauthorized use, distribution, or duplication is prohibited. All rights reserved.

Abaqus, the 3DS logo, SIMULIA, CATIA, and Unified FEA are trademarks or registered trademarks
of Dassault Systèmes or its subsidiaries in the United States and/or other countries.
ANSYS is a registered trademark of Ansys, Inc.
Solaris is a registered trademark of Sun Microsystems.
Silicon Graphics is a registered trademark of Silicon Graphics, Inc.
Hewlett Packard is a registered trademark of Hewlett Packard Co.
Windows, Windows XP, Windows 2000, and Windows NT are registered trademarks of Microsoft
Corp.

Contents

Introduction 1.1
Z-set user commands . 1.2
Conventions . 1.3

Mesher 2.1
Introduction . 2.2
****mesher . 2.4

***mesh . 2.7

Finite Element (.inp file) 3.1
Introduction . 3.2
****calcul . 3.7
****calcul dynamic . 3.10
****calcul mechanical explicit . 3.15
****calcul eigen . 3.20
****calcul thermal transient . 3.21
****calcul diffusion . 3.22
****calcul weak coupling . 3.23
Three stars commands . 3.24

***linear solver . 3.25
***linear solver sparse iterative . 3.27
***linear solver rigid . 3.30
***auto remesh . 3.31
***bc . 3.34
***coupled resolution . 3.85
***compute G by gth . 3.86
***contact . 3.91
***dimension . 3.106
***eigen . 3.107
***elastic energy . 3.109
***equation . 3.110
***feti . 3.124
***file management . 3.126
***fluid structure interface . 3.127
***impose kinematic . 3.128
***init dof value . 3.129
***initialize with transfer . 3.130
***make restart file . 3.133
***matrix storage . 3.134
***material . 3.135

***mesh . 3.141
***sub problem . 3.147
***output . 3.148
***parameter . 3.155
***post increment . 3.168
***pre problem . 3.175
***random distribution . 3.179
***resolution . 3.181
***resolution newton . 3.182
***resolution bfgs . 3.183
***resolution riks . 3.184
***restart . 3.197
***auto restart . 3.198
***table . 3.199
***function . 3.203
***specials . 3.204
***xfem crack mode . 3.205

Post calculations 4.1
Introduction to Post Computations . 4.2
****post processing . 4.11

***data source . 4.14
***data output . 4.17
***local post processing . 4.19
***global post processing . 4.92

Reference 5.1
Functions . 5.2
Degrees of Freedom (DOF) . 5.4
Element Geometries . 5.5
Boundary sets . 5.7
Element Integration . 5.8
Structure of problem.geof . 5.10
Z-set output formats . 5.12

Z7 output format . 5.13
Z8 output format . 5.17

Environment Variables . 5.19

Bibliography 6.1

Index 7.1

Chapter 1

Introduction

Z-set — Non-linear material
& structure analysis suite 1.1

Z-set user commands

Description:
This Z-set user-commands handbook covers the command syntax and some of the details for
the different files involved with basic use of the FEA related functionality.

Handbook Summary:
The following list summarizes the documentation for all of Z-set. As part of our 8.2/8.3
developments, greatly expanding the software documentation is one of our primary goals.

The list below is sorted in what we feel would be an appropriate sequence for the normal
user, starting with installation and reviewing capabilities, to creating input files and eventually
scripting and developing add-ons to the software.

Release Notes/Zmaster The basic overview of the software, installation instructions, and
documentation for the graphical user interface Zmaster on all platforms. The Zmaster
manual also now covers all the base reference chapters such as environment variables,
user parameters, function reference, command line programs, etc.

Examples/Training This book is essentially the “getting started” documentation for the
software. The book describes Z-mat, simulation, optimization, material models, and
the FEA code use. The examples cover setup of complete models, and are meant to
demonstrate the capabilities with relatively simple examples.

Z-mat User commands This summarizes the command file formats and capabilities of the
Z-mat interface, simulation, optimization and material files for all of Z-mat and Z-set.

Z-set User commands This summarizes the command file formats for the FEA related
capabilities including meshing, FEA solution, post processing, etc.

Developer A guide to the user-extensible features of the software, including scripting,
ZebFront material model development, making plugins, and the C++ programming
API.

Plugins A guide to add-on features available.

Theory Theory manual covering formulations (under development).

Z-set — Non-linear material
& structure analysis suite 1.2

Conventions

This page summarizes the conventions used for the Z-set input files. An overview of the general
command syntax (command hierarchies) is given in the beginning of the Examples/Training
manual.

• Running of Z-set modules generally requires that a “problem name” be given. Most
input and output data files are based on this name with a variety of suffixes attached.
Henceforth, problem will often be used to indicate the problem name given while running
the commands.

• The characters % and # indicate that the rest of the line is a comment. For example:
***load % external problem loading

• There are no abbreviations allowed in the use of keywords. All keywords and command
names must be written entirely.

• The admissible characters for the names of user variables are: a-z, A-Z, ", +, -, *,

., =, /, ,), (, \, ~

• The text entry is always case-sensitive.

• The use of braces [] in the syntax descriptions indicates an option with a default
definition.

• All parameter values used in the input files and described as “real” in the syntax de-
scriptions must have a decimal point. All standard specifications of floating point values
are accepted. Two examples of real values are: 3.0 4.2e-5

• The use of parenthesis () indicates data input of real values in vector form. An example
is: (0.1 0.2 1.0). In most cases the size of such vectors must be compatible with the
overall problem dimension.

The symbol
�

indicates a section where the calculation is sensitive to input data or format.

Z-set — Non-linear material
& structure analysis suite 1.3

Chapter 2

Mesher

Z-set — Non-linear material
& structure analysis suite 2.1

Introduction

Description:
The Mesher module is provided in order to perform batch mesh manipulations and combi-
nations to pre-existing meshes, and import and export Z-set format files1. These operations
supersede the meshing utility programs previously supplied with Zebulon. The normal mode
of operation is as a batch process launched with the command Zrun -m prob. The utilities
are however also supported in some other applications, such as the batch mesher commands
of the Zmaster geom and mesh menus.

An important thing to remember is that the ASCII file represents the objects and con-
figuration options for a particular calculation. The computational modules are then run
sequentially in order to modify or generate the mesh. This is therefore the configuration of
an object system, and not the activation of repeated “database” manipulation commands.

Batch mode:
For batch operation, an ASCII input file is submitted to the Zrun program to manipulate
and combine any number of meshes. The operation will generate more files depending on the
options chosen. The most common use is to generate a new ASCII .geof or binary .geo file
for use in a FEA calculation.

See the syntax description for ****mesher below 2.4 for a detailed overview of the mesher
syntax, with some examples.

Running in Zmaster:
The batch mesh operations in Zmaster operate on the current mesh (accessed under the Mesh
command, or act on a newly generated mesh after all the Zmaster domains are generated
(in the Geom command). This later operation happens after regenerating the mesh with the
Mesh Domain button. The figure below shows the dialogs which get opened after selecting
the Batch Mesher Create button in the geometry toolbar.

1example problems using the mesher can be found in $Z7PATH/test/Mesher test/INP and in
$Z7PATH/test/Zmaster/MESHER

Z-set — Non-linear material
& structure analysis suite 2.2

The operation of the graphical interface for running batch meshers is described more
completely in the Zmaster manual. Here we want to remark on the connection between the
command file syntax described in this chapter and the dialog creation.

The available meshers are listed in the bottom list box of the Mesher Create dialog with
the exact names of the **-level command option in this chapter. The *** level commands
are not available in Zmaster, so the operation always applies to the currently loaded mesh. In
the figure above, the mesher option **extension (see page 2.53) is selected. Selecting either
New or Modify will open up an edit dialog with the options equivalent to the *-level options
of the selected mesher. The option data fields can then be typed directly into the dialog box
entries.

User extensions:
Because there are in fact many many things one may wish to do to a mesh in the course of
building a model, the interface for adding new mesh transformation commands is especially
flexible and easy to program. The details of how to create a mesher are described in the sepa-
rate Z-set Developer handbook, with example code in the distribution $Z7PATH/User-project

directory.

Z-set — Non-linear material
& structure analysis suite 2.3

****mesher

****mesher
Description:

The basic syntax for meshing operations follows the same logic as other parts of the program.
Meshing blocks are started with the four asterisk command ****mesher. The mesher can
load different portions of the final mesh as independent meshes. The successful mesher will
therefore learn to create a series of meshing operations, modifications, and unions for a final
mesh.

Note:
There is a modified syntax for the mesher which can be used by Zmaster in the .mast file. The
****master command accepts the sub-command ***mesher which indicates that transfor-
mation commands from this chapter are to be applied every time the mesh button is pressed.
One can move those commands outside the Zmaster program by changing the command to
****mesher and including a ***mesh/**open group.

Syntax:
The major meshing commands are as follows:

****mesher

[***delete_file fname]

[***global_parameter param-definitions]

[***shell shell-command]

[***function_declarations functions]

[***mesh name]

....

***delete file This allows entry of file names to delete before running the meshers.
Usually this will be the new mesh file name to ensure a clean state before running.

***function declarations This command allows entry of function declarations ahead
of the mesher applications, so that complex pre-defined functions can be used where
function selection is allowed (e.g. nsets and so on).

***global parameter This base-level command allows setting of global parameter def-
initions in the mesher input to customize behavior. See the reference section in the
Release/Zmaster manual.

***mesh This command opens a new mesh object which will be the subject of meshing
operations. Use the **open command to load an existing mesh in for operations. Any
number of **-level transformation commands can then be applied to the mesh before
the next ***-level command. At the occurrence of the next ***-level command, the
mesh will be saved to disk with the problem name given as a parameter to ***mesh.
Following ***mesh/**open operations can re-open the mesh for further processing.

***shell This command can be used to launch external programs to generate sub-meshes
or other operations. Probably the most useful purpose for this command is to run a
Zmaster batch job.

Z-set — Non-linear material
& structure analysis suite 2.4

****mesher

Example:
An example of the mesher commands as output by Zmaster is as follows:

% in prob.mast

****mesher

**extension

*elset face

*distance 3.000000e+00

*num 1

****return

These lines will make the element set face (which was created using one of the domain
tools) to be extended into a 3d mesh every time the mesh-domains button is pressed. The
mesher commands could be moved into the .inp file to separate the process:

%

% in prob.inp.. importing prob_2d.geof a,d applying an

% extension into 3d.

%

****mesher

***mesh prob

**open prob_2d.geof

**extension

*elset face

*distance 3.000000e+00

*num 1

****return

Z-set — Non-linear material
& structure analysis suite 2.5

****mesher

Example:
One feature of the batch mesher is the ability to step through multiple meshing steps in the
same file. For example a multi-part mesh can be generated using a combination of Zmaster
batch jobs, and mesher transformers and unions:

****mesher

***shell Zrun -B part1.mast % generate a new, 2d part1.geof

***mesh part1 % start creating the 3d, also part1.geof

**open part1.geof % open the 2d created from Zmaster batch

**extension % now start extensions

*elset ALL_ELEMENT

*new_elset solid

*prog 1

*distance 0.5

*num 2

*dir (0 0 1)

**nset z=0

*plane 0. 0. 1. 0.

*limit 0.001

***shell Zrun -B part2.mast % a ***-level command closes the prev. mesh

***mesh part2 % start the part2 mesh independently

**open part2.geof % and in the same way as above. This lets

% % us generate complex meshes in 1 run

% etc

%

****return

Z-set — Non-linear material
& structure analysis suite 2.6

****mesher

***mesh

***mesh

Description:
As introduced before, this command indicates the start of a new mesh object. The meshing
operations which follow will act on the mesh object, until the next ***-level command is
reached. At that point the mesh will be saved with the given name. Use of this command
invariably involves use of the **open or **import commands.

Syntax:
The basic ***mesh section syntax is summarized below:

***mesh [output-name]
**export format output-name
**open input-name
**open_mast mast-file.mast
**import format input-name
**inp_file

**output output-name
**dont_save_final_mesh

**transform
...

The mesh output name output-name is the problem name, and therefore does not have the
.geof suffix. It is optionally included on the same line as ***mesh for convenience.

**export Write an input file in a format other than native Z-set.

**import Open a mesh file in a format other than the native Z-set .geof format. The
format type is a keyword for one of the external mesh formats allowed.

**inp file specify that the input file (FEA loads, BCs element formulation, time sequences,
etc) are to be read and output with the mesh. This is probably desired in order to get as
full an import or export as possible. Note: this command is provided as a convenience
feature, and does not imply full compatibility between formats. It is likely the different
codes options just do not have an equivalent for translation, and will be passed silently.
Be careful as well not to overwrite existing hand-edited input files! – there are no
questions before output is written.

**open Open a file defining the mesh which will be operated on. There must be only one
instance of open in the ***mesh block. The file name is the problem name without the
.geof suffix. Additional mesh components can be loaded using the **union command
described on page 2.119.

**open mast Open a Zmaster .mast file, running Zmaster batch on it beforehand. This
open mode actually does a union, but normally it would be used in place of an **open

or **import command.

**output specify the output file.

**dont save final mesh disables writing the mesh, as it normally is the final stage of the
meshing process.

. . . continued

Z-set — Non-linear material
& structure analysis suite 2.7

****mesher

***mesh

Aside from the basic control options, any number of mesh transformation operations can
be added in this section as indicated by **transform. The syntax and operation of these
different mesher transformations are the subject of the remainder of this chapter.

Translations:
Version 8.4 is shipped with the following import/export translators:

CODE DESCRIPTION

abaqus Import/export an ABAQUS mesh and input file

ansys Exports mesh and input file commands to ANSYS input

file.

gfm Import/export the GFM format from COSMOS/M with

input file commands

gmsh Import/export GMSH format. Only GMSH format’s ver-

sion 2 is supported for export.

ideas Import I-deas unv format.

k Imports/exports to LS-Dyna input file.

neu Import FEMAP neutral format.

These import functions currently only import geometrical information. Boundary conditions
and real constants are mapped into mesh sets (nset, elset, etc) and given names based on
their values.

Z-set — Non-linear material
& structure analysis suite 2.8

****mesher

***mesh

Example:
A small example input follows. See the following sections for more examples demonstrating
the individual operations. This example opens up a sub-mesh named BASE1, rotates and flips
it, and creates some node/boundary sets for it.

****mesher

***mesh BASE

**open BASE1

**rotate

x1 1. 0. 0.

x3 0. 1. 0.

**switch *axis -z z

**rotate x3 0. 0. 1. x1 0.984808 -0.173648 0.0

**translate 0. -5.5 -1.0

**nset base_fix *plane 0. 0. 1. 0.0

**bset base_top *plane 0. 0. 1. 1.0

****return

Example:
Two examples follow, the first of mesh import and the second of problem export (mesh and
loads).

****mesher

***mesh linear_trial % start making file linear_trial.geof

**import gfm big_mesh.gfm % import a Cosmos/M model

**quad_to_lin % linearize the mesh

**elset front *func x>0.0; % generate new sets

**elset bottom *func y<0.0;

**renumbering frontal_only % frontal renumbering

****return

****mesher

***mesh % no name because we’re giving output

**export abaqus abaqus_lin.inp % via the export command.. abaqus format

**inp_file % include info from the .inp file (BCs)

**open zebu_lin.geof % This specifies the input name for both

****return % the geof and .inp files

Z-set — Non-linear material
& structure analysis suite 2.9

****mesher

***mesh

**add element

**add element

Description:
This command is used to enter elements into a mesh “by hand.” It is useful normally to utilize
element numbers which are “far away” from those generated by other meshing commands.
Normally Zmaster and batch mesher commands all presume a sequentially numbered mesh,
starting with one. So if you know there will be less than 10000 elements, you could start your
hand-created element numbers there.

It is normally very useful to write shell scripts (or command batch files) to generate the
records for this type of command.

Syntax:
The **add element command takes a list of element definitions, much as they are given in
the .geof file. There are no checks if an equivalent element already exists. The element id
must be unique, and the nodes with the given ids must exist before this command runs.

**add_element

ele-id ele-type n1 n2 ... nN r1 ...rm
...

Any number of elements can be added. The entries must however start with an acceptable
element number and element type. In the above, n1 means node number 1 id, and r1 means
real constant 1 for the element (e.g. thickness). The number and type of real constant possible
depends on the element type, as does the appropriate number of nodes.

A duplication of this command exists which automatically creates an element set made
up of the new elements. That command has the syntax:

**add_element_elset eset-name
ele-id ele-type n1 n2 ... nN r1 ...rm
...

Example:
Some example uses follow.

**add_element

6000 c2d4 1 2 3 4

6001 c2d4 2 5 6 7

**elset new_elem

*elements 6000 6001

A shorter version would use the **add_element_elset variant:

**add_element_elset new_elem

6000 c2d4 1 2 3 4

6001 c2d4 2 5 6 7

Z-set — Non-linear material
& structure analysis suite 2.10

****mesher

***mesh

**add info

**add info

Description:
This command is used to assign “real-constant” information to a set of elements if that has
not yet been set in other preprocessing. One command per elset/real constant value must
be used. The real constant will also be added on the the end of the real constants for the
elements as they exist in the given elset.

Typical applications of this command are to assign thicknesses to plane stress elements.

Syntax:
The **add info command takes the following syntax:

**add_info

*elset eset-name
*info real-value

Example:
An example use follows:

%

% set my plane stress elements thickness to 0.1 mm

%

**add_info *elset ps_elem *info 0.1

Z-set — Non-linear material
& structure analysis suite 2.11

****mesher

***mesh

**add node

**add node

Description:
This command is used to enter nodes into a mesh “by hand,” and parallels the **add_element
command. It is useful normally to utilize node numbers which are “far away” from those
generated by other meshing commands.

Syntax:
The **add_node command takes a list of node definitions as they appear in the .geof file.
The node dimension will be sized according to the number of coordinates entered in after the
node id. Note that zero coordinates must therefore be entered.

There is checking only if the node id already exists. No check is performed for the node
coordinate.

**add_node

id-num x1 x2 [x3]

...

A duplication of this command exists which automatically creates a node set made up of
the new nodes. That command has the syntax:

**add_node_nset nset-name
id-num x1 x2 [x3]

...

Any number of nodes can be added. The entry fields are read until another **-level

command is reached. The dimension of the node is assigned according to the number of
entered coordinates (x1, etc above).

Example:
An example use follows.

**add_node_nset some_nodes

200 1. 0. 0.

201 2. 0. 0.

202 2. 1. 0.

203 1. 1. 0.

Z-set — Non-linear material
& structure analysis suite 2.12

****mesher

***mesh

**boolean operation

**boolean operation

Description:
This command is used to perform boolean operation between meshes (union, intersection or
difference). It uses the GNU Triangular Surface library (GTS) plugin for operations on mesh
skins. For volume meshes, INRIA remeshing plugins are required (see **yams_ghs3d).

Syntax:
The command has the following syntax:

**boolean_operation

*operation operation-type
*file1 geof-filename
*file2 geof-filename
*output_file gts-output-filename
[*keep_1st nset]

[*keep_2nd nset]

[*dist_crit distance]

[*surface_crit value]

[*refinement func(x,y,z)]

[*absolu]

[*tolerance tol]

[*min_size min]

[*max_size max]

[*gradation grad]

[*optim_style opt]

[*options yams-command-line-options]

Many keywords correspond to the yams syntax and one should refer to the manual. The
operation order is file1 OPERATION file2. For a complete description of the syntax see
**yams_ghs3d documentation.

*operation operation-type must be intersection, union or difference.

*output file file name containing GTS output after the boolean operation.

*keep 1st this will preserve the topology of specified nset the in first mesh.

*keep 2nd this will preserve the topology of specified nset the in second mesh.

*dist crit merge vertices closer than the specified distance.

*surface crit eliminate degenerate triangles with relative surface areas smaller than the
specified value.

Example:

Z-set — Non-linear material
& structure analysis suite 2.13

****mesher

***mesh

**boolean operation

****mesher

***mesh difference

**boolean_operation_ghs3d

*operation difference

*file1 cube.geof

*file2 volume.geof

*output_file difference.gts

*options -m 100 -FEM

*optim_style 1

*keep_2nd skin

****return

- →

Topology preserved in this part.

Note:

The “difference” operation requires the substracted mesh to be slightly bigger than the
other one. Therefore, it may be necessary to “thicken” it slightly, using e.g. **thicken_bset
(page 2.112) or **porcupine (page 2.86).

Z-set — Non-linear material
& structure analysis suite 2.14

****mesher

***mesh

**bounding box

**bounding box
Description:

This mesher is used as a utility to print the bounding box which the mesh fits in

Syntax:
There are no options with this command. The bounding box will be calculated using the
current mesh configuration. That is after all preceeding meshers are applied. Any number of
calls to this can of course be applied.

**bounding_box

Example:
An example output from this command follows.

Bounding box :

xmin=0 xmax=3

ymin=0 ymax=3

zmin=0 zmax=1

Note this is printed among the general screen messages, and stored no where else. The
responses round to integer values if there is no decimal needed.

Z-set — Non-linear material
& structure analysis suite 2.15

****mesher

***mesh

**bset

**bset
Description:

This command creates a boundary set according to various input data. The syntax is the
same as for the **nset command, except an ordered boundary is produced. A typical use is
to generate first an nset using the **nset command, and then simple make a copy of it in
the bset format using the *use nset option. The command can also be used to find the outer
boundary of an elset.

Syntax:
The bset mesher takes the following command syntax:

**bset name
... options

with the following options available:

*axes switches the axes defining a cylindrical coordinate system when using the *plane

selection. an example is *axes 1 3 2 where the cylinder is rotated about the 2 axis
instead of the default 3-rd axis.

*elset elset1 ... elsetN use only the nodes which are used by the given element sets. This
can be used to make a “wrap” of separate elsets, or to easily limit the selection criterion.

*function Create a bset using the nodes which satisfy the given function. Remember to
include a semicolon at the end of the function definition.

*limit Limit for nodes to qualify to be accepted by a function or plane function (default
is 1.e-3).

*nodes node1...nodeN uses the given nodes to make up the set.

*plane makes a boundary given a plane equation (4 real values). The 1st 3 values
are the components of the plane normal, and the fourth is the intercept (or equiv. for
cyl. coordinates).

*req number allows the user to set the number of nodes of the *use_nset option which
must match the element faces in order to create the bsets. For example if the nset given
includes just the edge nodes of an element around a corner, the “wrapping” face around
the corner can be added.

*surface Indicates that the set should be a bounding surface (outer) of the acceptable
nodes (see also unshared_faces page 2.121).

*type cartesian | cylindrical set the type of coordinate system to be used with the
*plane option.

*use dimension dim sets the dimension of bset to create. Normally the bset will be a
faset for 3D meshes (the max space dimension found in the mesh), and will be a liset

for 2D meshes.

. . . continued

Z-set — Non-linear material
& structure analysis suite 2.16

****mesher

***mesh

**bset

*use bset bset-name use the nodes in the given bset to apply the criteria given. Several
entries may be given.

*use nset nset-name make the nset named into a bset. Several entries may be given. This
replaces the use of all nodes in the mesh to apply the selection criteria.

Example:
To create the outer “wrapping” surface (unshared) for the element set PIPE2:

**bset wrap1 *surface *elset PIPE2

Making an outer face at a radius of 20.

**bset face_r=20

*limit 1.e-3

*type cylindrical

*plane 1. 0. 0. 20.

More examples are given for the *nset command on page 2.80.

Z-set — Non-linear material
& structure analysis suite 2.17

****mesher

***mesh

**bset align

**bset align
Description:

This command aligns lisets (in 2D) and fasets (in 3D) such that their “normals” are aligned
in the same direction sign-wise. The normals are still normal to the face.

The bset normal alignment is very important for certain boundary conditions (e.g. pres-
sure) and contact surfaces to be correctly defined.

Syntax:

**bset_align

*bsets bset1 ... bsetN
[*normal (direction)]
[*towards (point)]
[*away_from (point)]
[*inwards]

By default (i.e. if neither normal, towards nor away_from are specified), the bset are
oriented outwards (or inwards, if it is specified).

*bsets is the list of bsets on which the reorientation is applied. The shorthand ALL may
be used to select all bsets.

*normal is a global direction that all normals will be aligned with (positive scalar product)

*towards all normals will be directed towards this point

*away from all normals will be directed away from this point

*inwards all normals will be directed inwards (instead of the default ourtwards)

These last 4 options are of course mutually exclusive. Note that the vectors must be entered
using vector notation (c.f. page 1.3).

Note:
This mesher replaces **faset_align (page 2.59), which was only available in 3D.

Example:

**bset_align

*bsets top bottom

*normal (0. -1. 0.) % all normals will point down

**bset_align

*bsets exterior % all normals will point outwards

**bset_align

*bsets left right

*towards (0. 0. 0.) % all normals will point to the origin

Z-set — Non-linear material
& structure analysis suite 2.18

****mesher

***mesh

**bset to mast

**bset to mast

Description:
This command generates a .mast file fragment from an existing liset. This fragment can be
added to an existing mast file, to generate a new geometry.

Syntax:
The command has the following syntax:

**bset_to_mast

*liset liset-name
*output mast-file

*liset is the name of the liset to consider

*output specifies the name of the resulting mast file

Example:

****mesher

***mesh

**dont_save_final_mesh

**open section.geof

**unshared_edges border

**bset_to_mast

*liset border

*output starter.mast

****return

Z-set — Non-linear material
& structure analysis suite 2.19

****mesher

***mesh

**bset to mesh

**bset to mesh

Description:
This command creates a 2D mesh from an existing boundary set (bset). Currently, it only
handles bset on the x− y plane, and linear elements.

In a certain way, it does the opposite of an **extension.

Syntax:
The command has the following syntax:

**bset_to_mesh

*bset_name bset-name
*new_mesh_name resulting-geof-name

[*keep_bset] liset-name(s)

*bset name is the name of the bset to consider.

*new mesh name is the name of the resulting geof file.

*keep bset is a list of existing lisets to keep in the 2D mesh.

Example:

****mesher

***mesh tmp.geof

**open tube3D.geof

**bset_to_mesh

*bset_name face.1

*new_mesh_name tube_section.geof

****return

Z-set — Non-linear material
& structure analysis suite 2.20

****mesher

***mesh

**build fronts

**build fronts
Description:

This command fastly creates many continuous lisets related to a given nset.
Resulting output as many as required lisets named liset-name0, liset-name1, etc.

Syntax:

**build_fronts

[*elset elset-name]

[*nset nset-name]

[*bset liset-name]

*elset restrict operation to a given elset (default is ALL_ELEMENT).

*nset nodes that must be used to creat lisets.

*bset base name of created lisets.

Z-set — Non-linear material
& structure analysis suite 2.21

****mesher

***mesh

**build parallel boundar

**build parallel boundary files

Description:
This mesh operation is used to make data files for use with boundary conditions allowing
boundary set binary files to be used to apply variable conditions in a parallel computation.
Normally such files are supplied at as constant values for element faces, and the binary files
must be split in order to represent faces existing on parallel computation sub-domains.

Please see the ***pressure command on page 3.68 for further details for the file loading.

Syntax:
The command has the following syntax:

**build_parallel_boundary_files

*file file-name
*bset bset-name

*file specifies the input file (problem) name. The output file names will look like: file-
name.005 for the output map 5.

*bset the name of the boundary set where these BC values apply. This set must be
ordered exactly the same as the stored file data.

Example:
An example use follows. The first snippit is the mesher applied to a set of binary files in order
to split them up correctly for a parallel computation:

****mesher

***mesh press_calc

**open meshfile.geof

**build_parallel_param_files

*file thermal_calc.ctnod

*card 200 % total number to process

**build_parallel_boundary_files

*file internal_pressure.bin external_pressure.bin shell_pressure.bin

*bset internal_pressure external_pressure shell_pressure

****return

Z-set — Non-linear material
& structure analysis suite 2.22

****mesher

***mesh

**build parallel param f

**build parallel param files

Description:
This mesh operation is used to make data files for use with the ***parameter command in
a parallel finite element calculation (see page 3.155). It takes a parameter binary file which
would normally be used directly with the ***parameter **file command described on page
3.157 and splits it appropriately for the different sub-domains.

Syntax:
The command has the following syntax:

**build_parallel_param_files

*file list-of-files
*card nb-outputs-for-each-file

[*ip]

*file specifies either one or a list of binary input file names for reading the parameter
values. These files will be read using the Ni format which defaults to big-endian. The
output file name will be formatted for example file-name.005 (for the output map 5).

*card the number of output maps for each file specified in the *file parameters. This
command assumes that the file records 1-1 the current mesh node numbering and size.

*ip indicates that the parameter values are at integration points, not nodes. All the element
integration locations are assumed to map exactly the same as the calculation generating
the parameter file.

Z-set — Non-linear material
& structure analysis suite 2.23

****mesher

***mesh

**phi psi no refine

**phi psi no refine

Description:
This command is used to compute the two levelsets describing a planar semi-circular crack.
The first levelset Φ implicitly describes the crack plane as the surface where Φ = 0 whereas the
second levelset Ψ implicitly describes a cylinder as the surface where Ψ = 0 whose intersection
with the plane forms the crack.

So the crack location is defined by:

{
Φ = 0
Ψ < 0

This mesher command computes the nodal values of these two levelsets, and stores the
result in two files named phi.dat and psi.dat. These two files can then be used in an XFEM
analysis.

Syntax:
The command has the following syntax:

**phi_psi_no_refine

*center (1. 0.5 0.5)

*normal (0. .2 .7)

*rho .3

*vtk_output levelset

*center defines the crack center

*normal is the plane normal vector

*rho is the crack radius

*vtk output if present, allows to export the computed levelsets into two vtk legacy files
for debugging purposes using Paraview

Z-set — Non-linear material
& structure analysis suite 2.24

****mesher

***mesh

**cfv build

**cfv build

Description:
This command is used to mesh a regular shape around a crack front (the command name
stands for “Crack Front Volume build”). This volume can be used to perform accurate
integrals for energy release rate computations with De Lorenzi or G-theta formulations. In
order to be connected to a tetrahedral mesh, “c3d5” pyramid elements are located on every
face which must be connected to the rest of the mesh.

The crack front be can specified by a liset (a Catmull-Rom spline interpolation is used),
or volume must be completly discribed by a crack front method component (i.e. gtheta).
Warning: this method is only available for 3D meshes, and it generates linear meshes only.

Syntax:
The command has the following syntax:

**cfv_build

[*liset liset-name propagation-direction-vector]

[*ask_crack_to crack-method-name]

*rc internal-square-length
*ri internal-radius
*re external-radius
*nbc number-of-square
*nbri number-internal-cuts
*nbre number-external-cuts
[*delta square-deformation]

[*delta_p pyramid-height]

[*connect connection-radius]

[*opening opening-angle]

Note that at least on of the command *liset or *ask_crack_to must be specified in order
to select how to build the volume.

*liset specifies whether one liset describes the crack front. A vector is required to define
the orientation of the crack.

*ask crack to specifies which crack-method describes the volume.

*rc defines the semi-edge length of the interior square of the section.

*ri defines the radius of the interior circle of the section.

*re defines the radius of the exterior circle of the section.

*nbc is used to define the number of sub-squares dividing interior square part of the section.

*nbri defines the number of radial cuts between the square part and the interior circle.

*nbre defines the number of radial cuts between the interior and the exterior circles.

*delta is used to define the square deformation.

*delta p used to specify the height pyramid elements.

Z-set — Non-linear material
& structure analysis suite 2.25

****mesher

***mesh

**cfv build

*connect used to specify volume should be connected to a hexahedral mesh: a layer of
pyramidal elements is inserted.

*opening used to create a volume with a meshed crack open in direction propagation-
direction-vector. Initialy this crack is filled by elset “compl”.

Various elsets are created:

• “int” contains the interior part of the volume with only hexahedral elements (on which
integrations should be computed).

• “pyr” contains the pyramidal elements used to connect the volume to tetrahedral
meshes.

• “ext” contains external pyramidel elements if the connect keyword is specified.

• “compl” contains elements inserted inside the crack if the opening keyword is specified.

Various nsets are created:

• “front” contains the nodes located at the crack front.

• “skin” contains the nodes located on the skin made of pyramidal elements used to
connect the volume to tetrahedral meshes.

Example:

****mesher

***mesh volume.geof

**open crack.geof

**cfv_build

*liset LISET_FRONT (-1. 0. -1.)

*rc .3

*ri .6

*re 1.

*nbc 2

*nbri 1

*nbre 2

*opening .1

*delta .07

*delta_p .2

*connect 2.

****return

Z-set — Non-linear material
& structure analysis suite 2.26

****mesher

***mesh

**cfv build

pyr

int

ext

compl

Z-set — Non-linear material
& structure analysis suite 2.27

****mesher

***mesh

**check orientation

**check orientation

Description:
This command verifies that all elements are correctly mapped such as to create a valid geom-
etry (i.e. face normals all pointing out and properly connected).

Syntax:
This command takes an optional command to select the elset upon which the orientation
check should be made.

**check_orientation

*elset eset-name

*elset specify an element set to check and adjust so as to be correctly defined. By default
the element set is ALL_ELEMENT.

Z-set — Non-linear material
& structure analysis suite 2.28

****mesher

***mesh

**classical to zstrat

**classical to zstrat

Description:
This command is used to transform 3D volumic elements into “Z-strat” solid elements. Z-strat
elements are quadratic in the plane and linear in their thickness. They are typically used for
composite applications.

Syntax:
The command has the following syntax:

**classical_to_zstrat

*axis axis-number
[*layered bool]
[*elset elset-name]

*axis is a number defining the linear axis.

*layered is a boolean indicating that a layered geometry should be used (e.g. c3d12l or
c3d16l instead of c3d12 and c3d16). The default value is not layered (FALSE).

*elset name indicates that the mesher should apply only to the elements in the given elset.
The default is to apply on ALL_ELEMENT.

Example:

**classical_to_zstrat

*axis 3 % elements become linear in the z axis

*layered TRUE % make layered elements

*elset E1 % apply on E1 elset

Z-set — Non-linear material
& structure analysis suite 2.29

****mesher

***mesh

**condense out elset d

**condense out elset domain

Description:
This mesher is for parallel problems, where a specific feature across the mesh is desired to be
wholely contained in one domain. The mesh should already be split into domains, from which
the elements in the given elset will be “condensed out” into a new domain (i.e. the original
split should be n − 1 domains, with n the total desired number). Note that doing this does
not ensure that the domains will be well sized for balanced load, or that poorly conditioned
partial domains with isolated small groups of elements could be created.

Syntax:
The command has the following syntax:

**condense_out_elset_domain

*elset elset-name

*elset specifies a pre-existing elset name which will make up the new domain.

Z-set — Non-linear material
& structure analysis suite 2.30

****mesher

***mesh

**compute predefined levelset

**compute predefined levelset
Description:

This command is used to generate levelsets (scalar field given at nodes of the FE mesh)
defining cracks with classical geometries in an xfem analysis (page 3.205).

In this case the discontinuity is described by 2 levelsets φ and ψ, where (see figure):

• φ is the signed distance of a node to the crack plane,

• ψ is signed the distance to the crack front of the orthogonal projection of a node on the
crack plane.

such that points for which φ = ψ = 0 are located on the crack front, and positive ψ values
correspond to nodes ahead of the front.

φ

ψ

crack plane

crack front

FE node

Syntax:

**compute_predefined_levelset

*type (circular|elliptic|line)

[*rho radius]

*center c
*normal (n)

[*rho2 minor radius]

[*direction (d)]

[*do_fem_output]

[*elset_name name]

[*elset_distance dist]

[*phi_name phi file]

[*psi_name psi file]

• command *type is used to specify the crack geometry (predefined types available are:
circular, elliptic, line),

• radius is the radius (circular cracks) or the major radius value (elliptic cracks). It
has no effect for line cracks.

• (c) is a vector defining the position of the centre for circular or elliptic cracks. In
the case of line cracks, the coordinates of a point on the crack front is expected.

• (n) is a vector defining the normal to the crack plane (see figure above),

Z-set — Non-linear material
& structure analysis suite 2.31

****mesher

***mesh

**compute predefined levelset

• for elliptic cracks, command rho2 is needed to specify the minor radius value.

• command *direction defines a vector (d) whose meaning is the following, depending
on the particular geometry:

– the direction of the minor axis for an elliptic crack. Note that in this case (d)
is expected to be orthogonal to (n) (otherwise an error occurs).

– a vector parallel to the crack front for line cracks. The sign of this vector also
defines the crack propagation direction in this case, as described on the following
figure: ψ > 0 is obtained in direction (t) = (d) ∧ (n)

−→n
−→
d

−→t =
−→
d ∧−→n

ψ > 0

ψ < 0

half-plane
ahead of the front

C

• optional command *do_fem_ouput allows the generation of FE results with (φ, ψ) values
calculated on nodes of the input mesh (see the example for the iso-contours generated).

• command *elset_name creates an elset (with name ename) containing elements situated
within a distance of less than dist from the crack front.

• commands *phi_name et *psi_name allows to redefine the names of the output
ASCII files used to store the levelset values on the mesh nodes (default names are
”phi.dat” and ”psi.dat”). Those files are used to define the discontinuity by the
***xfem_crack_mode command.

Z-set — Non-linear material
& structure analysis suite 2.32

****mesher

***mesh

**compute predefined levelset

Example:

**compute_predefined_levelset

*type circular

*center (1.0 0.5 0.5)

*normal (0. 0. 1.0)

*rho 0.2

*do_fem_output

x

y

z

x

y

z

φ : distance to the crack plane ψ : distance to the crack front

Z-set — Non-linear material
& structure analysis suite 2.33

****mesher

***mesh

**continuous liset

**continuous liset

Description:
This command is used to reorder a scrambled line set. It first looks for a potential line set
beginning, and then puts all other segments in the right order. The result is a well ordered
line set, even is the initial segment ordering is completely scrambled.

Syntax:
The command has the following syntax:

**continuous_liset

*liset_name liset-name
[*start_at_node node-id]

[*start_near (x,y,z)]

The *liset name is used to indicate the name of the source line set to be re-ordered. If this
line set is a loop (hence has no “natural” beginning), the optional start_at_node parameter
specifies where to begin the liset. Alternatively, the start_near parameter specifies the
localization of this first node its (possibly approximate) coordinates.

Z-set — Non-linear material
& structure analysis suite 2.34

****mesher

***mesh

**crack 2d

**crack 2d

Description:
This command is used to insert a crack in a 2D mesh and apply 1/4 node displacements at
the tip.

A duplicate of the command exists which automatically modifies the nodal positions on
edges surrounding the crack tip to 1/4 node positions to simulate a singular field better. To
get this option replace crack_2d with crack_2d_quarter_nodes

Syntax:
The command has the following syntax:

**crack_2d_quarter_nodes

*liset liset-name
[*node node-id]

[*crack_nset nset-name]

[*half]

The options for this command are described below:

*liset give the liset name which describes the crack plane. This liset will be kept after
the meshing operation.

*node Give node ids or nset names indicating nodes which are crack tips. These nodes
terminate the crack surface creation.

*crack nset enter a name for a new nset to be created, which makes up the opposing
surface from the crack definition liset. This lets one do contact, or other manipulations
on the newly created surface.

*half Only make a closed crack tip at the first end of the given liset. That is for an
edge-crack, make the line set originating where the crack tip is to be and leading out to
the free surface.

Example:
An example use is shown below taken from the test case Jint_test/INP/ccp_2.inp which
is shown in the figure below.

Z-set — Non-linear material
& structure analysis suite 2.35

****mesher

***mesh

**crack 2d

This case includes 2 cracks, one of which is open ended (the first) and one which automatically
detects the crack tip nodes.

****mesher

***shell

rm -f ccp_2.geof

Zrun -B ccp_2.mast

***mesh ccp_2

**open ccp_2.geof

**crack_2d_quarter_nodes

*liset crack

*half

**crack_2d_quarter_nodes

*liset crk

****return

Z-set — Non-linear material
& structure analysis suite 2.36

****mesher

***mesh

**crack 3d quarter nodes

**crack 3d quarter nodes
Description:

This command is used to set 1/4 node positions for adjacent faces of a 3d crack, as defined
by a line set. It does not yet provide crack insertion via splitting face sets.

Syntax:
The command has the following syntax:

**crack_3d_quarter_nodes

*liset liset-name

where the liset-name is the name of a valid line set defining the crack tip line.

Z-set — Non-linear material
& structure analysis suite 2.37

****mesher

***mesh

**create interface elem

**create interface elements

Description:
This mesher takes a pre-existing boundary set and creates interface elements (e.g. debonding)
at that location. The mesher can be used either between a boundary set and an existing node
set, which assumes that bset and nset are not actually connected, or by using a boundary set
only, where additional nodes will be inserted to make an interface condition.

Syntax:
The command has the following syntax:

**create_interface_elements

*boundary bset-name
[*elset elset-name]

[*nset nset-name]

[*axi]

[*reduced]

*axi flag that the interface elements are axisymmetric. Default is not axisymmetric.

*boundary indicates the boundary set from which to create interface elements. There will
be 1 interface element per boundary segment in the set.

*elset gives the name of the elset to create with the new interface elements. If this
command is not included the name interface will be used for a new elset.

*nset indicates the opposing node set name. This option indicates that the mesh is already
disconnected at the interface.

*reduced flag indicating reduced integration. Default is full integration.

Z-set — Non-linear material
& structure analysis suite 2.38

****mesher

***mesh

**create interface elemements between elsets

**create interface elements between elsets

Description:
This mesher takes pre-existing element sets and creates interface elements (e.g. debond-
ing/cohesive elements) at their common boundaries.

Syntax:
The command has the following syntax:

**create_interface_elements_between_elsets

*elsets elset-name1 elset-name2 [elset-name(n)...]
[*axi]

[*reduced]

[*remove_sets]

*elsets gives the names of the elsets between which the boundary will be created (note:
elsets and not elset). The keyword ALL_ELSET may be used to designate all elsets
(except the standard elset ALL_ELEMENT) present in the mesh. Names for the new
element sets will be automatically generated, and a new elset EI_ALL will be generated
containing all new interface elements, as well as an elset VOL_ALL containing all volume
elements (so that the union of EI_ALL with VOL_ALL should yield ALL_ELEMENT).

*axi flag that the interface elements are axisymmetric. Default is not axisymmetric.

*reduced flag indicating reduced integration. Default is full integration.

*remove sets indicates that only the interface elements should be kept, and that the
associated elsets generated during the meshing are thrown away. The default is to keep
all elsets.

Z-set — Non-linear material
& structure analysis suite 2.39

****mesher

***mesh

**create interface elset

**create interface elset

Description:
This mesher applies interface (debonding) elements between all elements of a given elset.

Note:
Currently (Z-set 8.3 and newer), this command is implemented for linear 2d elements only
(i.e. it will create i2d4 elements).

Syntax:
The command has the following syntax:

**create_interface_elset

*apply_to elset-name
*elset_name new-elset-name

*apply to indicates the element set which is to be broken up and have interface elements
inserted at each element edge. The default element set is ALL ELEMENT.

*elset name The new element set containing the interface elements. The default name is
debond.

Z-set — Non-linear material
& structure analysis suite 2.40

****mesher

***mesh

**cut surface

**cut surface
Description:

This command performs a robust surface intersection operation. It requires a 3D volume
mesh that better be refined (using Distene remeshing tools) closely to a given meshed surface.

Resulting output is made of a conform surface mesh (elset Nsurface) decomposed in
various elsets: parts of original elsets boundaries (Nskin) and their newly cut parts (Nskinc),
created cut surface (Nlip). Some output nset are also produced: Nlip containing created cut
surface nodes, Nskin skin nodes, Nfront front nodes (for surface containing a front liset i.e.
for 3D crack insertion), Nseg_pb containing original volume mesh edges nodes for edges cut
an even times by the cut surface (smaller original volume elements are required in this area,
as cut surface curve radius must be too small there).

This fast and robust algorithm is based on the given volume elements intersection, thus
a remeshing process is required before FE computations (for better surface meshing, and
volume filling), on the output Nsurface.

Syntax:

**cut_surface

[*elset elset-name-list]

[*elset_to_cut elset]

[*nset_to_cut nset]

[*nset_not_to_cut nset]

[*surface elset-name]

[*tolerance tol]

[*front liset-name-list]

[*front_ini nset]

[*filter tol]

[*allow_quad]

[*inside]

*elset list of elsets that should be cut by surface. If more than one is given, boundaries
between the elsets will be kept during the process (to be able to keep various elsets in
the output).

*surface is the given surface elset mesh to intersect with.

*elset to cut only this elset may be cut (default is to cut ALL_ELEMENT).

*nset to cut only edges contained in this nset may be cut.

*nset not to cut edges contained in this nset are not allowed to be cut.

*tolerance if an edge intersection node is closer from an edge node than this distance
value assume the edge node is on the cut surface. In most cases (in fact, in all currently
tested cases), the zero default value of this parameter has proved to be robust.

*front list of lisets representing the extremity of the cut surface that must be accurately
inserted (i.e. for 3D crack insertion).

Z-set — Non-linear material
& structure analysis suite 2.41

****mesher

***mesh

**cut surface

*front ini initial crack front, for newly cracked surface insertion (this nset represents the
previous crack front), the newly surface will contain this previous front.

*filter tolerance distance used to fuse pairs of same created surface elements (i.e. front
3D crack advance, to keep only one side of previously built lip). Default value is zero
(no surface will be fused), if required a usual value is 1.e-5 times the mesh characteristic
length.

*allow quad quad elements can be created during the algorithm. Default is not allowed
as non-planar elements can be created an make a surface remeshing process fail.

*inside crack surface advance may not pass through the boundary of the mesh (e.g. when
2 cracks are coalescing).

Z-set — Non-linear material
& structure analysis suite 2.42

****mesher

***mesh

**dg transform

**dg transform

Description:
This command is used to transform a mesh for continuous Galerkin formulation to a mesh
suitable for discontinuous Galerkin formulation.

Syntax:
The command has the following syntax:

**dg_transform

[*elset] elset-name
[*bset] bset-name
[*name] name-of-bset-to-create

*elset specifies elset where operations should be made.

*bset specifies bset where discontinuity should be inserted (should not work well for now,
see VC if needed).

*name specifies name that will be given to pairs of bset where DG interface formulation will
be imposed (format will be namea0/nameb0, namea1/nameb1, ... ,nameaN/namebN).

Z-set — Non-linear material
& structure analysis suite 2.43

****mesher

***mesh

**deform mesh

**deform mesh

Description:
This mesher deforms the active mesh via results taken from a previous analysis. It is a simple
implementation assuming 1-1 correlation between the meshes. It can be used to load any types
of displacement results, but is most commonly used to create bucking analysis imperfections
via the modes of a previous eigen solution.

Syntax:
The command has the following syntax:

**deform_mesh

*map solution-no
*input_problem pb name
*magnitude disp
*format fmt

*format gives the solution format to use for deforming the mesh. These can be any of the
ones with a valid results database implementation (see e.g. page 2.117).

*input problem The prefix name of the problem results which will be used for the defor-
mation.

*map specifies the solution or map number from the results file which will be used to get
the deforming displacements. It must be one listed in the .ut file. The default is to
take the last output available.

*magnitude the scale factor for the displacements to be applied to the mesh. The default
is 1.

Example:
An example for deforming a mesh with a previous Eigen solution follows:

****mesher

***mesh buckle.geof

**open T_54_9.geof

**deform_mesh

*map 1

*input_problem lanczos

*magnitude 0.05

Z-set — Non-linear material
& structure analysis suite 2.44

****mesher

***mesh

**delete elset

**delete elset

Description:
This command is used to remove elements from the mesh by a given element set name.
Elements are also removed from any other elset of which they are part. Nodes (in nsets
for instance) and integration points (in ipsets) which are “orphaned” by this command will
be removed as well. If elsets or ipsets become empty as a result of this, they will also be
removed. The command can be used to create cavities in the mesh, which are otherwise
difficult to obtain.

Syntax:
The delete elset command simply takes a list of valid elset names. There are no options with
this command.

**delete_elset elset-name

Note::
If you wish to simply remove the element set and not the elements themselves, use the
remove_set command (see page 2.95).

Z-set — Non-linear material
& structure analysis suite 2.45

****mesher

***mesh

**div quad

**div quad

Description:
This mesher is used to perform a quadrilateral to triangular transformation.

Syntax:
The command has the following syntax:

**div_quad

[*elset elset-name]

*elset gives an elset for which the division will be applied. the default elset is ALL ELEMENT.

Note:
This mesher does not preserve any sets related to the elsets which are sub-divided.

Example:
The following shows the division take for a ruled mesh.

x x

y

y

z z

Z-set — Non-linear material
& structure analysis suite 2.46

****mesher

***mesh

**elset

**elset

Description:
This command creates an element set according to various input data. If the element set
already exists, new elements will simply be added. Elements will be included in the set only
once.

Syntax:
The elset command takes a variety of options to specify the elements to be added (and each
of them may be specified more than once):

**elset name
[*add_elset eset1 ... esetN]

[*allow_partial]

[*attached_to_nodes id1 ... idN]

[*attached_to_nset nset1 ... nsetN]

[*elements id1 ... idN]

[*func function ;]

[*not_in_elsets eset1 ... esetN]

[*remove_elset eset1 ... esetN]

[*sequence start id end id [increment]]

[*use_elsets eset1 ... esetN]

where the options can be taken from the following:

*add elset Adds all the elements in the named (pre-existing) element sets.

*allow partial Indicates that a function describing element node positions for the elset is
true if one or more of the nodes meets the given function criteria. By default, all nodes
must fit the equation.

*attached to nodes indicates that all elements attached to nodes with the given ids are
to be added to the elset.

*attached to nset indicates that all elements attached to nodes within the given nset
names are to be added to the elset.

*elements Enter element ids in directly. Non-existing element ids will be silently ignored.

*func Enter a function which is used to select the elements. The function should be a
chain of multiplied boolean expressions in the coordinate space (see example below).

*not in elsets will add the complement to the given element sets as a new elset. Not
compatible with other options such as *func and so on.

*remove elset will remove the elements of the given element sets from the list of currently
added elements. This operation is executed after all other **elset subcommands.

. . . continued

Z-set — Non-linear material
& structure analysis suite 2.47

****mesher

***mesh

**elset

*sequence will add a sequence of elements from start id to end id with increment increment
(Z-set 8.4 and newer). The latter can be negative, but in that case, start id should be
greater than end id. If this is not the case, -increment will be used instead. If increment
is omitted, a default value of 1 is used. Non-existing element ids generated with this
command will be silently ignored.

*use elsets use only the elements in the named element sets to check the given function
against. The default is to use all elements in the mesh.

Example:
Some example uses follow.

% Shows the use of functions

**elset front

*func x>0.0;

**elset bottom

*func y<0.0;

**elset look

func (y<0.0)(z>20.0);

*allow_partial

% Creates/adds to the elset "first_10" with elements 1 through 10

% (better use the *sequence command)

**elset first_10

*elements 1 2 3 4 5 6 7 8 9 10

% Creates/adds to the elset "sequence_example" with elements

% 1 4 29 30 32 34 ... 48 50 53

**elset sequence_example

*elements 1 4 29

*sequence 30 50 2

*elements 53

% Creates/adds to the elset "inverse_sequence" with elements

% 50 48 46 ... 32 30

**elset inverse_sequence

*sequence 50 30 -2

% Creates/adds to the elset "twice" with elements 1 through 15

**elset twice

*sequence 1 10

**elset twice

*sequence 5 15

Z-set — Non-linear material
& structure analysis suite 2.48

****mesher

***mesh

**elset by element type

**elset by element type

Description:
This mesher creates one elset per element type.

Syntax:
The command has the following syntax:

**elset_by_element_type

and takes no option.

Z-set — Non-linear material
& structure analysis suite 2.49

****mesher

***mesh

**elset explode

**elset explode

Description:
This mesher is used to provide a per-elset exploded view of a mesh, which can be useful for
presentation purposes. Because this mesher adds nodes between elset interfaces, the display
of ctnod results files will be invalidated (including the displacements), and there is no checking
to that regard2

Note:
By default, this mesher does not actually explode the elsets! If the shrink factor is not
specified, it merely creates the nodal interfaces in order to do so later with a **function

(page 2.60) or **translate (page 2.117) mesher afterwards.

Syntax:

**elset_explode

[*elsets elset-list]

[*shrink factor]

*elsets list of elsets used as domains to separate. By default, all elsets are used, which
can lead to bad result.

*shrink specify the factor used separate the different parts of the mesh. The new nodes
position is computed as v′ = v + f · (e− c)
with v and v′ respectively the initial and final node position, f the shrinking factor, c
the center of the mesh e the center of the elset.

Example:
One can use this mesher after a calculation has been performed to separate the mesh, then re-
assign the visualization mesh in the problem.ut file. The following splits the 2 elset problem
zsteel_rubber found in the static test directory:

****mesher

***mesh toto

**open zsteel_rubber.geof

**elset_explode

*elsets acier rubber

**translate

*elset_name acier

*x -20.0

*y -20.0

The ut file can be now modified to use the toto.geof file just created.

**meshfile toto.geof

**node U1 U2 Pn RU1 RU2 RPn

**integ sig11 sig22 sig33 sig12 dv F11 F22 F33 F12 F21

2actually the record sizes will be interpreted incorrectly, and the results loaded are therefore a randomized
mix of values. No crash occurs however.

Z-set — Non-linear material
& structure analysis suite 2.50

****mesher

***mesh

**elset explode

**element

1 1 1 1 4.000000000000000e+00

2 1 1 2 8.000000000000000e+00

3 1 1 3 1.200000000000000e+01

4 1 1 4 1.600000000000000e+01

5 1 1 5 2.000000000000000e+01

And the results can be then viewed on the exploded mesh via Zmaster. When doing this
make sure and turn off deformed mesh and to include either (or both) **contour_by_element
and **value_at_integration output options in the calculation.

Z-set — Non-linear material
& structure analysis suite 2.51

****mesher

***mesh

**elset split

**elset split

Description:
The **elset_split command is used to create parallel problem domains and write a prob-
lem.cut file based on different named elsets. Normally one would use an automated mesher
such as **metis_split to do this, but the elset split ensures repeatability and fine control
over the process.

Note:
Any elements in the mesh which are not assigned to a domain using the *domain sub-option
will be assigned to the 1st domain.

Syntax:
The command has the following syntax:

**elset_split

*no_binary

*domain elset-name
...

*domain_startswith stem

*no binary indicates that no binary cut file should be written (default is to write the
binary cut).

*domain enter new domain made up of the elements in the given elset name. Repeat the
command for all domains.

*domain startswith is a shorthand to automatically enroll all domains whose name starts
with the given stem.

Example:
There are some examples of this command in the Parallel_test directory.

****mesher

***delete_file mpc1b_small.geof

***shell Zrun -B mpc1b_small.mast

***mesh mpc1b_small

**open mpc1b_small.geof

**quad_to_lin

**elset right *add_elset R2 R4

**elset left *add_elset R1 R3

**elset_split

*domain right

*domain left

*no_binary

Z-set — Non-linear material
& structure analysis suite 2.52

****mesher

***mesh

**extension

**extension

Description:
This command extends planar (2D or 3D shell/face) geometries into 3D. One can use either
an element set or a face set which is already defined.

Note:
For extensions which are between two element
sets, care must be taken to properly define the
sets. Order of domain selection is critical here.
The figure here shows the proper order for ruled
mesh definition in Zmaster. Select the edge seg-
ments in the sense of the arrowed paths when tak-
ing the same view to your mesh extension.

face1

face2

Syntax:

**extension

*elset eset1 | ALL_ELSET

*elset2 eset2
*new_elset new elset
*distance dist
*num num
*prog prog
*dir dir-vec
*flipit

*reduced

*invert_fasets

*remove_initial_nsets

*elset eset1 defines the element set or faset which will be extended. There is no
limitation on the type of elements or faces contained on the face. Mixed order is not
allowed however. The option ALL_ELSET extends each elset of the mesh3. If no elset is
specified, the elset ALL_ELEMENT is taken.

*elset2 eset2 This optional command makes the extension between two mesh/face sets as
given. Note that the mesh topology must be exactly the same. This command
is most useful with the mapped mesh domains available in Zmaster. The degenerate
case of 2 edges being the same (so the extended mesh forms a wedge) is handled. Do
not use *distance with this option. This option is disabled when the first elset name
is ALL_ELSET.

*new elset new-elset This optional command gives the elset name for the created elements
instead of being the same as the input name. This is disabled when the input elset name
is ALL_ELSET.

3Available in version 8.2 or newer

Z-set — Non-linear material
& structure analysis suite 2.53

****mesher

***mesh

**extension

*distance This command is used to define the extension distance, dist (real). Do not use
it when the extension is between two meshes.

*num This command takes an integer value for num in order to define the number of
elements which will be created in the cross section.

*prog Geometric progression of the extension.

*dir The direction along which to extend. This direction is specified in vector form and
does not need to be normalized. The default is (0. 0. 1.) .

*flipit Used when the created elements are inverted.

*reduced Create reduced integration elements.

*invert fasets In order to properly calculate the normals (and other properties) of a face
set, the nodes in each element need to be ordered in a certain manner within the faset.
This is very important for applying correctly many types of boundary conditions. After
extension, the nodes in the newly created faset have the same order as in the parent
faset, which implies that the normal points in the same direction, which may not always
be the desired direction. This option allows the order within a faset to be inverted, so
that the direction of the normal of the newly created faset is reversed as well.

*remove initial nsets Initial nsets are also extended and the suffix “-ext” is added to
these new nsets names. This option allows to remove initial nsets and keep extended
one with the inital names.

Example:

The following example shows the use of extensions in different directions, and making use
of the 3d plane meshing in Zmaster.

x

y

z

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+
+

+

A0

R1
R2

R3

x

y

z

Z-set — Non-linear material
& structure analysis suite 2.54

****mesher

***mesh

**extension

**extension

*elset R1

*dir (0. 1. 0.)

*distance -2.0

*num 10

**extension

*elset R2

*dir (0. 1. 0.)

*distance -2.0

*num 10

**extension

*elset R3

*dir (0. 1. 0.)

*distance -2.0

*num 10

**sweep

*elset A0

*angle 90.0

*num 4

Z-set — Non-linear material
& structure analysis suite 2.55

****mesher

***mesh

**extension along nset

**extension along nset

Description:
This mesher is a modification of the **extension mesher in order to allow an extension path
to be defined with a set of nodal points.

Syntax:
This command takes the same commands as the **extension command (see page 2.53) and
2 additional commands relating to the path.

**extension_along_nset

*nset_to_follow nset-name
*global_normal normal-vector

Note that many of the commands from extension, though available, make no sense for this
mesher because of the pre-defined path (such as num, direction, etc).

*global normal Input a vector allowing the initial face plane to be calculated. The tangent
vector of the path is calculated based on linear segments from and to adjacent nodes.

*nset to follow Enter an existing nset path for the mesh extension to take place.

Example:
The following example shows extension along an nset, using a curve generated in Zmaster and
meshed using line l3d2 line elements (under Ruled mesh). A boundary set called lines was
also created in Zmaster which creates the nset along which the extension will take place.

****mesher

***mesh extension_nset_linear

**open curve_linear.geof

**union

*add zzz.geof

*elset zzz

*tolerance 0.

**extension_along_nset

*nset_to_follow lines

*global_normal (1. 0. 1.)

*elset zzz

**delete_elset lines

****return

x x

x

y

y

y

z

z

z

lines

lines

Z-set — Non-linear material
& structure analysis suite 2.56

****mesher

***mesh

**extract surface

**extract surface

Description:
This command builds bsets corresponding to each surface of a given elset.

Syntax:
The command has the following syntax:

**extract_surface

[*elset] elset-name
[*criterion] angle

*elset restricts the operation to the named elset (defaults to ALL_ELEMENT),

*criterion is the angle (in degrees) from which two adjacent elements are considered part
of different surfaces (defaults to 45◦).

Z-set — Non-linear material
& structure analysis suite 2.57

****mesher

***mesh

**extrude shell

**extrude shell

Description:
The command **extrude_shell is used to extrude 3d shell elements into “Z-Strat” solid
elements.

Syntax:
The command has the following syntax:

**extrude_shell

[*elset_name elset-name]

[*layered]

[*thickness thickness]

*elset name indicates that the mesher should apply only to the elements in the given elset.
The default behavior is to use ALL ELEMENT for the elset.

*layered is a flag setting that a layered geometry should be used (e.g. c3d12l or c3d16l
instead of c3d12 and c3d16). The default is not layered.

*thickness gives an uniform thickness thickness to the elements. Default value is taken
arbitrarily as 0.1.

Z-set — Non-linear material
& structure analysis suite 2.58

****mesher

***mesh

**faset align

**faset align
Description:

This command aligns fasets such that their “normals” are aligned in the same direction sign-
wise. The normals are still normal to the face.

The faset normal alignment is very important in order that boundary conditions (e.g.
pressure) and contact surfaces are correctly defined.

Syntax:

**faset_align

*faset faset1 ... fasetN
*normal direction
*towards point
*away_from point

The normal must be entered using vector notation (c.f. page 1.3). If it is not entered at all,
either the option *towards or *away_from must be entered with a “target” point entered in
vector form.

This command is now replaced by the more general **bset align (page 2.18).

Example:
The following is from the example problem Straw/LIN_PLASTIC/straw.inp

***mesh straw

**open straw_base.geof

**nset fix

*point 0. -1. 0.

**nset R0-surf

func (y>=0.0)(y<=1.0);

**nset R1-surf

func (y<=0.0)(y>=-1.0);

**bset target

*use_nset nodes-ext

*elset A2

**faset_align *faset R6.1 *normal (0. -1.0 0.)

**faset_align *faset target *normal (0. -1.0 0.)

Z-set — Non-linear material
& structure analysis suite 2.59

****mesher

***mesh

**function

**function
Description:

This command modifies nodal positions according to the given function. These functions are
as described in the chapter on functions and scripting (page 5.2). Function transforms can be
applied to the whole structure (default), to nset(s), and to the nodes of an elset or elsets.

Syntax:

**function

*func func(x,y,z)
*xtrans func(x,y,z)
*ytrans func(x,y,z)
*ztrans func(x,y,z)
*nset nset1 ... nsetN
*elset elset1 ... elsetN

*func used for function definitions which are henceforth available. One can use a “learn”
command line option as well to specify an external file with function definitions.

*xtrans *ytrans *ztrans functions which specify a coordinate reassignment in x, y, or
z directions. Note that these are absolute values (trans is a bit of a misnaming), so an
actual translation of 0.40 in the z direction would use *ztrans z-0.40;

*nset specify nset(s) for the function to be applied to.

*elset specify elset(s) for the function to be applied to.

Example:
The following are the function statements from the example
$Z7PATH/test/Mesher_test/INP/func-xform.inp

**function

*elset pipe1

*function_def R:= 6.366197722 + z;

*function_def theta:=y/6.366197722;

*function_def Z:=R(z)*cos(theta(y))-6.366197722;

*function_def Y:=R(z)*sin(theta(y));

*ztrans Z(y,z);

*ytrans Y(y,z);

...

**function

*elset weld

*elset pipe2

*function_def f1:= (z>=1.0)*1.0 + (z<1.0)*(z>0.0)*z + (z<=0.0)*0.0;

*function_def f2:= (z>=0.2)*1.0 + (z<0.2)*(z>0.0)*(z*z/0.04);

*ztrans f1(z)*z + (1.-f1(z))*Z(y,z);

*ytrans f2(z)*y + (1.-f2(z))*Y(y,z);

Z-set — Non-linear material
& structure analysis suite 2.60

****mesher

***mesh

**function

x

y

z
x

y

z

x

y

z

x

y

z

Second
Function

Function
First

Z-set — Non-linear material
& structure analysis suite 2.61

****mesher

***mesh

**fuse nset

**fuse nset
Description:

This command joins nodes forming a “mini-union” algorithm, or can also be used to “clean
up” a mesh with possible gaps in nodes. This is very useful when batch mesher transforms are
applied to an initially exploded arrangement of sub-meshes, which are then to be transformed
together and glued. It is also an effective method to make cracks (in the absence of using
**crack_2d).

Syntax:

**fuse_nset

[*nset1 nset-name]

[*nset2 nset-name]

[*tolerance tol]

[*cleanup_mesh]

[*cleanup_nset nset]

[*average_locations]

[*allow_mixed_fuse]

*allow mixed fuse fuse nodes of different dimension.

*average locations this indicates that the new node position for joined nodes is in the
middle of their original positions. By default the node position in node set one is taken.

*cleanup mesh this changes the mode of operation to a “clean up” mode, where all nodes
closer than the tolerance are joined.

*cleanup nset cleanup only the nodes of a given nset.

*nset1 when not running in *cleanup_mesh mode, this specifies the name of one of the
two node sets which will be compared. It is required for standard use.

*nset2 enter the node set name to be compared with nset1.

*tolerance enter a real value for the magnitude of distance between nodes at or below
which they will be considered the same (its default value is that of the global parameter
Mesher.MeshFusion).

Z-set — Non-linear material
& structure analysis suite 2.62

****mesher

***mesh

**geof format

**geof format

Description:
This mesher is used to convert the mesh format from ASCII based, human readable form to
a binary file, and back again. Please note that the binary file will be read by Zebulon and
Zmaster much faster than the formatted mesh, and will also take up less disk space.

Syntax:
The command has the following syntax:

**geof_format

*format file-name
*unformat file-name

The options *format and *unformat set the operation to respectively convert the current
mesh file to a formatted .geof file, or convert the formatted file to a binary .geo file. The
default operation is to format the mesh. The mesh will be immediately saved using the
current mesh name (set after the ***mesh command). Thus mesher commands after the
**geof_format will not be included in that mesh file.

Note:
Alternatively, the mesh is automatically saved in binary mode if its filename ends with .geo,
as in ***mesh mymesh.geo.

Z-set — Non-linear material
& structure analysis suite 2.63

****mesher

***mesh

**hexa to tetra

**hexa to tetra

Description:
This command is used to tetrahedrize a mesh (i.e. transform all its c3d8 or c3d8r elements
to c3d4).

Syntax:
The command has the following syntax:

**hexa_to_tetra

[*elset] elset-name

*elset restricts the operation to the named elset

Note:
There is currently another mesher that has the same objective: hexa_only_to_tetra. The
latter’s main advantage is that it tries to keep a conforming mesh (i.e. cuts the faces coherently
between two adjacent elements). This cutting operation is not trivial, nor always possible.
So you should always check the result to see if the resulting mesh is conforming. Currently
it only knows how to handle c3d8, doesn’t have the *elset option, and doesn’t update the
bsets and elsets accordingly (nsets are unchanged by the cutting operation).

Syntax:
The command has the following syntax:

**hexa_only_to_tetra

[*seed] element-rank
[*talkative]

*seed selects which element should be started with (default is the first element).

*talkative (integer) produces more output, useful if something goes wrong. 1 adds a little
more output, 2 is very chatty.

Example:

****mesher

***mesh plaque_tetra.geof

**open plaque.geof

**hexa_only_to_tetra

*seed 4561

*talkative 1

****return

Z-set — Non-linear material
& structure analysis suite 2.64

****mesher

***mesh

**import abaqus pressure

**import abaqus pressure

Description:
This command imports ABAQUS input data for pressures on element faces into Zebulon.
This allows more robust pre-processors with ABAQUS export (e.g. Patran, Femap, etc), or
existing user programs, to define variable pressures over a surface.

Syntax:
The command has the following syntax:

**import_abaqus_pressure

*bset bset-name
*ptable_file out-file-name
*use_dimension dim

*bset assign the name of the new bset for the pressures to be applied to.

*ptable file

*use dimension

Z-set — Non-linear material
& structure analysis suite 2.65

****mesher

***mesh

**insert discontinuity

**insert discontinuity
Description:

This command fastly duplicates nodes of a bset to create a discontinuity. If an nset is given
those nodes will not be duplicates in order to represent a 3D crack front for instance.

Resulting output contains an odd number of nset named side0, side1, side2, side3, etc.
linked to each pair of sides of the discontinuity (a pair is built for each discontinous zone of
the given bset).

Only for 3D meshes.

Syntax:

**insert_discontinuity

[*elset elset-name]

[*bset faset-name]

[*nset nset-name]

*elset restrict operation to a given elset (default is ALL_ELEMENT).

*bset continuous or discontinuous faset where discontinuity must be built.

*nset nodes that must not be duplicated (to create a crack front for instance).

Z-set — Non-linear material
& structure analysis suite 2.66

****mesher

***mesh

**inverse bset

**inverse bset

Description:
This command is used to inverse the geometric direction of line or face sets. The order of all
the segments of the set is reversed, as is the nodal ordering of each segment, so the face or
edge normals are inverted.

Any mix of lisets or fasets can be given to this command.

Syntax:

**inverse_bset

*names l1 l2 l3

...

Note:
This command supersedes the older **inverse_liset.

Z-set — Non-linear material
& structure analysis suite 2.67

****mesher

***mesh

**inverse liset

**inverse liset

Description:
This is used to revert the way a liset is described. It can be useful for instance for contact
computations in which the target liset must be followed in an order so that impacting nodes
are located on the right.

Syntax:

**inverse_liset

*names l1 l2 l3

...

Any number of liset can be inverted in the same pass. Liset names have to be declared after
*names option.

This command is deprecated as of 8.3 in favor of **inverse bset.

Z-set — Non-linear material
& structure analysis suite 2.68

****mesher

***mesh

**join bsets

**join bsets

Description:
This command is provided in order to join bsets together4 It is useful to use this command
after aligning bsets seperately using the **faset_align command.

Syntax:
The **join_bsets command requires a new bset name. and needs one or more existing bsets
to be entered which will be joined in the new set.

**join_bsets new-bset
*bsets bset1 ... bsetN

...

where bset1 indicates a character name of a pre-exisiting boundary set (faset or liset).

4There are no checks to eliminate duplicated segments, and lisets are not sorted.

Z-set — Non-linear material
& structure analysis suite 2.69

****mesher

***mesh

**join nsets

**join nsets

Description:
This command joins node sets. The original node sets are conserved. In the new node set the
order of the nodes is the same as in the constituting node sets, and the order of the node sets
within the new node set is as entered by the user. By default a check is carried out in order to
prevent nodes from being added twice. This can be switched off with the *keep duplicates

option.

Syntax:
The **join_nsets command requires a new node set name and one or more existing nsets
to be joined into the new node set.

**join_nsets new-nset
*nsets nset1 [nset2 ... nsetN]

[*keep_duplicates]

where nset1 ... nsetN indicate the names of pre-exisiting nsets.

Z-set — Non-linear material
& structure analysis suite 2.70

****mesher

***mesh

**lin to quad

**lin to quad

Description:
Use this command to increase the integration order of elements from linear to quadratic.
The command always assumes that the midside nodes are linearly placed between the corner
nodes, so if the linear mesh approximates a curve, the quadratic mesh will in fact model the
chord faceted approximation.

Syntax:
The command has the following syntax:

**lin_to_quad

[*elset] elset-name
[*no_nset]

*elset if specified, only the given elset is set to quadratic. The default is to run on the
whole mesh.

*no nset if specified, nsets are not modified, and thus only contain nodes from the original
linear mesh.

Note:
In version 8.3 there is no corresponding alteration of the node sets and boundary sets which

�
might be affected by this increase in order. The user should be careful to remove such
unwanted (and in the bset case, invalid) sets by hand using the **remove_set command (see
page 2.95).

Note:
The inverse operation quad to lin, i.e. going from quadratic to linear elements, is described
on page 2.89.

Z-set — Non-linear material
& structure analysis suite 2.71

****mesher

***mesh

**make springs

**make springs

Description:
This command is supplied as a convenient means of adding spring elements to a mesh5. In
particular, one noded springs which resist motion from the initial position can be added to
nsets which is often a useful means of achieving stability in structures which are initially
unstable for a quasi-static solution (e.g. soft springs added to a contact problem to allow a
solution before contact begins).

Syntax:

**make_springs spring-type new-elset
[*connect_points vector1 vector2]

[*connect_nodes node1 node2]

[*nset nset-name]

[*nset_pair nset1 nset2]

[*load_pmpc_eqn file-name]

[*proximity prox-val]

[*start_ele_id id-val]

The algorithm checks the spring geometry whether is is a one or two noded spring, and
uses the given options valid for that spring geometry.

*connect points used for 2 node elements, this command will link the two nodes closest
to the given coordinates with a spring. The command may be given as many times as
required.

*connect nodes used for 2 node springs, connecting by node id number rather than posi-
tion. The command may be repeated.

*nset used for 1 node springs. Springs of the new set will be attached to each node
contained in the node set.

*nset pair Join nodes between the two sets with a 2 node spring.

*proximity sets the algorithm to do a “proximity matching” between the two given nsets
(thus *nset_pair must be used). For each node of the 1st nset the closest node at most
prox-val away is linked up. So not all nodes in the 1st nset are required to be attached
to springs, and each will have only one spring attached. The 2nd nset may however
have multiple springs attached to one node.

*start ele id uses the given id number as the starting number for the new spring elements.

5in Zebulon, 2 noded springs are truss elements. 1 node elements are not drawn in Zmaster, and 2 node
elements appear as lines

Z-set — Non-linear material
& structure analysis suite 2.72

****mesher

***mesh

**make springs

Example:
A simple example adding one node springs follows.

**nset spring_set

*nodes

% Bolts, nuts (horiz)

136 164 163 43 70 38

633 609 610 637 638 661

% bolts (vert)

1622 1623 1635 1620

1686 1688 1699 1700

**make_springs l3d1 SPR

*nset spring_set

Example:
Here specific locations are connected with 2 node springs.

**make_springs l2d2 springs

*connect_points (0. 0. 0.) (1. 1. 1.)

*connect_nodes 25 341

Example:
The last example uses proximity matching for frontal renumbering across a discontinuous
mesh. The spring connectors are deleted right after doing the renumbering.

****mesher

***shell Zrun -B make_springs_renum

***mesh make_springs_renum

**open make_springs_renum.geof

**make_springs l2d2 springs

*nset_pair face_outside face_inside

*proximity 8.5

**renumbering frontal_only

**delete_elset springs

****return

Z-set — Non-linear material
& structure analysis suite 2.73

****mesher

***mesh

**mesh quad cube

**mesh quad cube

Description:
This command is used to quickly generate a cubic mesh. You can also refer to
mesh_quad_parallelepiped 2.75.

Syntax:

**mesh_quad_cube

*ncut n
*size length

*ncut Number of segments along the cube sides

*size Length of the cube sides

Example:

****mesher

***mesh cube

**mesh_quad_cube

*ncut 10

*size 1.

****return

Z-set — Non-linear material
& structure analysis suite 2.74

****mesher

***mesh

**mesh quad parallelepiped

**mesh quad parallelepiped

Description:
This command is used to quickly generate a cubic mesh. You can also refer to mesh_quad_cube

2.74.

Syntax:

**mesh_quad_cube

*ncutx nx
*ncuty ny
*ncutz nz
*sizex length x
*sizey length y
*sizez length z

*ncutx Number of segments along the parallelepiped sides parallel to the x axis

*ncuty Number of segments along the parallelepiped sides parallel to the y axis

*ncutz Number of segments along the parallelepiped sides parallel to the z axis

*sizex Length of the cube sides parallel to the x axis

*sizey Length of the cube sides parallel to the y axis

*sizez Length of the cube sides parallel to the z axis

Example:

****mesher

***mesh parallelepiped

**mesh_quad_parallelepiped

*ncutx 10

*ncuty 20

*ncutz 5

*sizex 10.

*sizey 20.

*sizez 5.

****return

Z-set — Non-linear material
& structure analysis suite 2.75

****mesher

***mesh

**metis renumbering

**metis renumbering

Description:
This is a re-numbering mesher which will reduce the fill-in generated during factorization of
the global matrix with sparse direct solvers (sparse direct or sparse dscpack). The software is
based on the Metis package developed by the Computer Science Department at the University
of Minnesota, and used by permission. Information on the Metis package is available on the
Web at the link:

http://www-users.cs.umn.edu/~karypis/metis/

Note:
Since version 8.3 the nodal renumbering for sparse matrices is done automatically, so this
command is no longer generally used.

Syntax:
The command has the following syntax:

**metis_renumbering

[*param_files file1 ... fileN]

*param files enables to renumber in the same time external parameter files.

Z-set — Non-linear material
& structure analysis suite 2.76

****mesher

***mesh

**metis split

**metis split

Description:
This is a mesher routine to build a sub-domain problem.cut file to be used with the parallel
solver. The software is based on the Metis package developed by the Computer Science
Department at the University of Minnesota, and used by permission. Information on the
Metis package is available on the Web at the link:

http://www-users.cs.umn.edu/~karypis/metis/

Note:
One can also use the ONERA splitmesh program (see p.2.107).

Syntax:
The command has the following syntax:

**metis_split

[*check_domains]

[*dont_check_domains]

[*check_domains_iter iter]

[*domains num]

[*no_binary]

[*no_elset]

*check domains indicates that the domains should be checked to see if there are elements
attached by less than an edge in 2d, or a face in 3d. This is important to avoid rigid
body and conditioning problems, especially with triangular or tetrahedral meshes. This
option is on by default; use the *dont_check_domains option to disable it.

*check domains iter modifies the maximum of iterations allowed in this domain verifica-
tion procedure (default value: 10).

*domains specifies the number of sub-domains to be used. In the absence of this subcom-
mand, the default value of 10 will be taken.

*no binary suppress the binary file, which is normally used if there are both .cu (binary)
and .cut (ascii) files. Useful for hand-modifying the cut files, or for verification.

*no elset suppresses creation of additional element sets showing the domains which were
created.

Example:
An example use follows. This case has a problem with some domains only tied by MPCs, so
springs are created before to establish total connectivity. The springs are removed after the
split is done, and then the cut file is re-written using the **write cut from elsets command
to take into account the deleted elements.

****mesher

***mesh calcul_parallel

**open big_problem.geof

**make_springs l3d2 pmpc1 *load_pmpc_eqn mpc_set_1.equ

Z-set — Non-linear material
& structure analysis suite 2.77

****mesher

***mesh

**metis split

**make_springs l3d2 pmpc2 *load_pmpc_eqn mpc_set_1.equ

**metis_split

*domains 8

*no_binary

**delete_elset pmpc1

**delete_elset pmpc2

**write_cut_from_elsets

****return

Z-set — Non-linear material
& structure analysis suite 2.78

****mesher

***mesh

**modify mesh and cut

**modify mesh and cut

Description:
This command, used for parallel computations, allows to modify the problem.cut and
problem.cu files.

Syntax:

**modify_mesh_and_cut

*enable_node_renumbering

*store_node_renumbering

*store_nodes

*enable node renumbering writes the ***renumbering option in the problem.cut and
problem.cu files to enable subdomain Metis renumbering (see page 2.76) at runtime.
This option should be used only with the sparse direct linear solvers.

*store node renumbering renumbers all subdomains using Metis renumbering and writes
the new subdomain nodes order in the problem.cut and problem.cu files.

*store nodes writes for each subdomain the list of nodes which belong to the subdomain
(without any renumbering operation). This list is always written in the problem.cut

and problem.cu files using the ONERA splitmesh program (see page 2.107).

Note:
Since version 8.3 the sparse solvers renumber internally so the node renumbering parts of this
command are no longer of importance. The *store_nodes command will however prevent an
“on the fly” calculation of the interface nodes, perhaps saving some calculation time.

Z-set — Non-linear material
& structure analysis suite 2.79

****mesher

***mesh

**nset

**nset

Description:
This command creates a node set according to various input data. If the node set already
exists, new nodes will simply be added. Nodes will be included in the set only once.

Syntax:

**nset name
[*axes axis1 axis2 axis3]

[*function function ;]

[*limit epsilon]

[*nodes node1 ... nodeN]

[*plane n1 n2 n3 intercept]

[*point [nearest] p1 p2 p3]

[*sequence start id end id [increment]]

[*surface]

[*type cartesian | cylindrical]

[*use_bset bset1 ... bsetN]

[*use_elset eset1 ... esetN]

[*use_nset nset1 ... nsetN]

*axes switches the axes defining a cylindrical coordinate system when using the *plane

selection. an example is *axes 1 3 2 where the cylinder is rotated about the 2 axis
instead of the default 3-rd axis.

*function creates a nset using the nodes which satisfy the given function.

*limit epsilon specifies the precision for nodes to qualify to be accepted by a function or a
plane function (because the values are never exactly the same due to numerical noise).
The default value is 10−3.

*nodes node1 ... nodeN adds specific (existing) node numbers from the mesh to the nset
(probably useful with **add_node). Non-existing nodes will be silently ignored.

*plane makes an nset given a plane equation (4 real values). The first three values are
the components of the plane normal, and the fourth is the intercept (or its equivalent
for cylindrical coordinates).

*point p1 p2 p3 adds existing node having the given coordinates and those within a
radius of epsilon. Add the keyword nearest if you only want the nearest node to be
added.

*sequence will add a sequence of nodes with ids from start id to end id with increment
increment (Z-set 8.4 and newer). The latter can be negative, but in that case, start id
should be greater than end id. If this is not the case, -increment will be used instead.
If increment is omitted, a default value of 1 is used. Non-existing node ids generated
with this command will be silently ignored.

Z-set — Non-linear material
& structure analysis suite 2.80

****mesher

***mesh

**nset

*surface indicates that the set should be an outer bounding surface of the acceptable
nodes (see also unshared_faces page 2.121).

*type cartesian | cylindrical sets the type of coordinate system to be used with the
*plane option. Default is cartesian.

*use bset bset1 ... bsetN apply the nset command to only those nodes in the given
boundary sets.

*use elset eset1 ... esetN apply the nset command to only those nodes in given element
sets (was *elset).

*use nset nset1 ... nsetN apply the nset command to only those nodes in the named node
sets.

Example:
Some example uses follow.

**nset ring1 *elset ring1 *plane 0. 1. 0. 4. % nodes in y=4

**nset fix *point 20. 0. 0. % single point

**nset r=20 % the outer radius

*limit 1.e-3 % of a part at R=20

*type cylindrical % with some allowance for

*plane 1. 0. 0. 20. % numerical errors

%

% These switch the cylindrical axes to be axis 2

%

**nset t=10 *axes 1 3 2 *type cylindrical *plane 0. 1. 0. 20.

**nset t=m10 *axes 1 3 2 *type cylindrical *plane 0. 1. 0. 0.

%

% Interpreted functions are perhaps the most useful .. see

%

**nset fix-func *function (z==0.0)*(y>=0.0);

Z-set — Non-linear material
& structure analysis suite 2.81

****mesher

***mesh

**nset intersection

**nset intersection

Description:
This command is used to create the intersection of nsets.

Syntax:
The command has the following syntax:

**nset_intersection

*nsets nset1-name nset2-name
*intersection_name resulting-nset-name

*nsets is followed by the name of the nsets to intersect

*intersection name is the name of the resulting nset

Example:

****mesher

***mesh tube.geof

**open tube_tmp.geof

**bset skin % creates the outer skin of the tube

*surface

**nset_intersection % creates the outer skin of the given domain

*nsets zone1-volume skin

*intersection_name zone1-skin

****return

Z-set — Non-linear material
& structure analysis suite 2.82

****mesher

***mesh

**open bset

**open bset
Description:

This command takes as input a bset (faset in3D, liset in 2D), and duplicates nodes at the
corresponding interface, to insert discontinuities (contact definitions, cracks ...) in the initial
mesh. In the output mesh, the following items are available:

• 2 bsets named SIDE0 and SIDE1, obtained by duplicating the input bset for each side
of the created discontinuity. Note that bset elements are automatically ordered such
that the normal is pointing outside (a property needed if those bset are to be used for
contact definitions).

• 2 elsets named SIDE0 et SIDE1 with elements connected to the previous bsets.

• set of nodes located at the tip of the discontinuity, and ordered in continuous lisets
named FRONT0, FRONT1 ... FRONTn, where n is problem-dependent.

• nset FRONT with all tip nodes in the prevous lisets.

Note that this command is only allowed for linear input meshes (commands
**quad_to_lin, **lin_to_qaud may be used to bypass this limitation).

Syntax:

**open_bset

*bset bname
[*surface sname]

[*elset ename]

[*create_interface]

• bname is the name of the bset, for which nodes need to be duplicated to create a
discontinuity in the input mesh,

• the optional command *surface takes as argument the name sname of an nset contain-
ing surface nodes. In this case surface nodes are removed from the front lisets (the front
nodes ending points are preserved, however). See examples below.

• when the optional command *create_interface is specified, interface elements are
automaticatlly added between both sides of the discontinuity. Corresponding interface
elements are included in the ouput INTERFACE elset.

Example:

**open_bset

*surface SURFACE

*bset to_open

*branches

Z-set — Non-linear material
& structure analysis suite 2.83

****mesher

***mesh

**open bset

x

y

z

x

y

z

input mesh with bset to open elsets SIDE0, SIDE1

x

y

z

x

y

z

2 lisets created: FRONT0, FRONT1 FRONTS without the *surface option

x

y

z

example FE results

Z-set — Non-linear material
& structure analysis suite 2.84

****mesher

***mesh

**perturb inside

**perturb inside

Description:
This command is used to perturb a mesh geometry with a given uniform random law and a
deformation factor (works only for 3D mesh if mesh surface must be preserved, e.g. without
command move_all).

Syntax:
The command has the following syntax:

**pertub_inside

*factor moving-factor
[*move_all]

*factor gives the moving factor distance.

*move all impose the pertubation to be applied also on the mesh surface (works for meshes
in any dimension).

pertub_inside (with move_all option)pertub_inside (with move_all option)

Z-set — Non-linear material
& structure analysis suite 2.85

****mesher

***mesh

**porcupine

**porcupine

Description:
This command builds a series of pyramids on an nset. This is generally used to in conjunction
with boolean operations, in order to join quadrangular mesh faces to triangular ones. See
e.g. the figure illustrating **regularize_cfv, on page 2.13, gives such an example (although
pyramids where built differently in that particular situation).

Syntax:
The command has the following syntax:

**porcupine

[*bset bset-name]

[*height relative-height]

*bset is the name of the bset on which pyramids are built. If it is not specified, pyramids
will be built on the whole mesh skin.

*height is the height of the pyramid. It is a value relative to the perimeter of the base.

The default value of
√

2
2 is chosen so that a square-based pyramid has equilateral faces.

Note:

****mesher

***mesh trench-for-diff.geof

**open trench.geof

**porcupine

*height .2

% It is then used in a boolean operation

***mesh difference.geof

**boolean_operation_ghs3d

*operation difference

*file1 earth.geof

*file2 trench-for-diff.geof

*output_file difference.gts

*options -m 100 -FEM % Memory size (MB)

*optim_style 1

*keep_2nd peau_commune

****return

Z-set — Non-linear material
& structure analysis suite 2.86

****mesher

***mesh

**project nset

**project nset

Description:
This command is used to project a given nset on a specified bset. It requires bset to be made
of planar faces.

Syntax:
The command has the following syntax:

**project_nset

*nset nset-to-project
*bset bset-to-project-on

[*distance] opening-value
[*direction] vector
[*orthogonal] vector

*distance insert a distance between projected points and given bset (can be used to
separate two surfaces).

*direction gives the direction vector followed during the projection (usually projection is
done orthogonal to the bset surface).

*orthogonal is used to specify a direction on which there must be no displacement of the
nset during the process.

Z-set — Non-linear material
& structure analysis suite 2.87

****mesher

***mesh

**propag crack

**propag crack

Description:
This command is used to grow 3D cracks described by an explicit mesh of the discontinuity.
It verifies various conditions in order to preserve mesh’s geometry.

Syntax:
The command has the following syntax:

**propag_crack

*crack front-nset-name lip0-nset-name lip1-nset-name ext-nset-name
[*ask_speed_to] crack-component-name
[*open] opening-value
[*close]

*crack gives various nsets describing crack geometry: front nodes, first and second lips
nodes. Last nset gives initial and final crack front nodes for opened cracks.

*ask speed to gives the name of the crack-front-component which impose the front ad-
vance.

*open is used to separate the lips with a given distance. This makes the remeshing process
easier for the volume automatic mesher.

*close is used to collapse the lips (after remeshing if open command has been previously
used).

nset-frontnset-front

nset-lip0nset-lip0

nset-lip1nset-lip1

nset-extnset-ext

Z-set — Non-linear material
& structure analysis suite 2.88

****mesher

***mesh

**quad to lin

**quad to lin

Description:
This command reduces the integration order of a mesh to linear. This command can be
conveniently applied using the Zquad_to_lin script front-end.

Note:
There is also currently (Z-set 8.3 and newer) a mesher lin to quad (see page 2.71) to go from
linear to quadratic. However, curved surfaces will be unrealistically modeled with facets. If
there is the possibility of running with quadratic meshes, the basic meshing operations should
be set to produce a quadratic mesh, and the mesh should be linearized before use.

Syntax:
The command will be activated simply with the command name.

**quad_to_lin

[*param_file list-of-files]

*param file is an optional list of nodal parameter files, that will be linearized accordingly.
Resulting files will be named with a .lin suffix.

Z-set — Non-linear material
& structure analysis suite 2.89

****mesher

***mesh

**randomize

**randomize

Description:
This command superimposes a random displacement to nodal positions. Such a modification
may be useful to model geometric imperfections.

Syntax:

**randomize

*magnitude mag
[*nset nset1 ...nsetN]

[*elset elset1 ...elsetN]

*magnitude enter the distance (real value) which is the maximum magnitude of the dis-
placement. The random displacement is applied with randomized direction in the order
of space the node is given in.

*nset apply the random alteration to the given node sets.

*elset apply the random alteration to the nodes used in the elements contained in the
given element sets.

Z-set — Non-linear material
& structure analysis suite 2.90

****mesher

***mesh

**refine mesh based on e

**refine mesh based on element domains

Description:
This command allows one to generate a master file (.mast) suitable to build a refined mesh.
Each element of the initial mesh provides the vertices and the edges of the new mesh. A
Delaunay domain is generated for each element of the initial mesh. The following figure
shows an initial mesh and the new mesh that was built with the generated master file:

x x

y y

z z

Syntax:

**refine_mesh_based_on_element_domains

[*edges no edges]

[*master_file filename]

*edges no edges gives the number of nodes to use for each edge of the refined mesh (default
2).

*master file filename is the filename for the master file of the refined mesh (default
refine.mast).

Note that this command currently (version 8.3) does not conserve the original elsets, and that
it is implemented only for 2D linear elements.

�
If the ***mesh do not save option is omitted, a .geof file will be generated. However,

this new .geof file is identical to the one that was loaded with the **open command (if no
other meshing operations have been carried out), and it does not contain the refined mesh.

Example:
An example use follows:

****mesher

***mesh do_not_save

**open base.geof

**refine_mesh_based_on_element_domains

*edges 6

*master_file fine.mast

****return

Z-set — Non-linear material
& structure analysis suite 2.91

****mesher

***mesh

**regularize cfv

**regularize cfv

Description:
This command is used to smooth crack front volume (see) after remeshing process. It
imposes a same distance between each node of the front and adapt the geometry of the
volume meshed arround the front. It can also be used only to smooth an nset arround
the front using projection on the crack front geometry. It the 3D crack propagation with
remeshing process this command should be used after propag_crack command and before
any remeshing command (yams_ghs3d).

Syntax:
The command has the following syntax:

**regularize_cfv

*liset crack-front-liset
[*cut_desc] nset-name nset-number
[*nset] nset-name

*liset gives the crack front liset.

*cut desc describes the crack front volume, using such format: nset-name0, nset-name1
... nset-name(nset-number-1).

*nset gives the name on the nset on which regularization should be done (if no CFV is
given).

nset-nameNnset-nameN
......
nset-name2nset-name2
nset-name1nset-name1
nset-name0nset-name0

Z-set — Non-linear material
& structure analysis suite 2.92

****mesher

***mesh

**remove nodes from nset

**remove nodes from nset

Description:
This command is used to remove a set of nodes from another given node set.

Syntax:
The command has the following syntax:

**remove_nodes_from_nset

*nset_name nset-name
*nsets_to_remove nset-list

The *nset name is used to indicate the name of the source node set (the node set where
the user wants to remove nodes). The *nsets to remove command lists all node sets to be
removed from the first node set.

Z-set — Non-linear material
& structure analysis suite 2.93

****mesher

***mesh

**remove orphans

**remove orphans

Description:
This command removes “orphaned” nodes from the mesh (nodes which are not attached to
anything).

Syntax:
There are no options or parameters for this command.

Z-set — Non-linear material
& structure analysis suite 2.94

****mesher

***mesh

**remove set

**remove set

Description:
This command is used to delete unwanted sets from the active mesh. In contrast to the
**delete elset command (page 2.45), these commands only delete the sets given, the actual
mesh entities being pointed to are left as they are.

Syntax:
The command has the following syntax:

**remove_set

*nsets nset-list
*bsets bset-list
*elsets elset-list
*ipsets ipset-list
*nsets_start_with nset-prefix-list
*bsets_start_with bset-prefix-list
*elsets_start_with elset-prefix-list
*ipsets_start_with ipset-prefix-list
*null_sets

*nsets every nset which name matches exactly with one the given names wil be removed.

*bsets idem for bsets.

*elsets idem for elsets.

*ipsets idem for ipsets.

*nsets start with every nset which name starts with one of the given prefixes will be
removed.

*bsets start with idem for bsets.

*elsets start with idem for elsets.

*ipsets start with idem for ipsets.

*null sets all empty sets will be removed, i.e. sets not containing any items.

Z-set — Non-linear material
& structure analysis suite 2.95

****mesher

***mesh

**rename set

**rename set

Description:
This command is used to rename sets from the active mesh.

(Available in Z8.4)

Syntax:
The command has the following syntax:

**rename_set

[*sets old-name1 new-name1 old-name2 new-name2 ...]

[*nsets old-name1 new-name1 ...]

[*bsets old-name1 new-name1 ...]

[*elsets old-name1 new-name1 ...]

Any number of pairs of names can be given to each sub-command, and any combination of
them is possible. As expected, the nsets command renames nsets, bsets command renames
bsets and elsets command renames elsets. The sets command tries to rename all three kind
of sets (and will simply ignore inexistent sets).

Example:

**rename_set

*sets

left hot_boundary % renames both the nset and the bset

right cold_boundary

top contact_zone

*nsets

bottom fixed_border

577 fixed_node % will actually create a new nset

Z-set — Non-linear material
& structure analysis suite 2.96

****mesher

***mesh

**renumbering

**renumbering

Description:
This command renumbers the mesh so that the global matrix front or bandwidth will be
reduced. The algorithm is a modified Sloan renumbering scheme.

The renumbering by this command is not especially fast, and cannot directly handle
disconnected mesh regions. In order to renumber across contact or MPC linked regions, use
the **make_springs command (see page 2.72).

Note:
It is advisable to do this operation as the last mesher command before saving the mesh.
Alternately on unix platforms the Zrenum command can be used.

Note:
The sparse matrix solvers should employ the metis renumbering described on page 2.76, or
use built-in renumbering if available for the solver used.

Syntax:

**renumbering

[*frontal]

[*nodal]

[*w1 val]

[*w2 val]

[*subdomain]

*frontal Renumbers elements to reduce the front size in a frontal solution.

*nodal Renumbers nodes to reduce the bandwidth size in a banded matrix solution (sky-
line).

*subdomain Renumbers according to subdomains for optimizing parallel computations.

Z-set — Non-linear material
& structure analysis suite 2.97

****mesher

***mesh

**resize node

**resize node

Description:
This command is used to set the nodal position to have a desired dimension. Note that since
version 8.0, the code supports mixed dimension meshes, and the dimension parameter in the
.geof file is not used (left for compatibility reasons). If two coordinates are given in the node
list, the node is a 2D node, and if three coordinates are given the node is a 3D node.

In Zmaster is is OK to have 3D nodes with 2D meshes, but in the FEA solver an error
will be produced during the creation of DOFs and management of the shape functions.

Syntax:
The command has the following syntax:

**resize_node

*nsets nset1 ... nsetN
*dim dim

The command *nsets can optionally be used to specify that the dimension change only apply
to those nodes. The *dim command specifies the dimension to change to.

Z-set — Non-linear material
& structure analysis suite 2.98

****mesher

***mesh

**rigid body

**rigid body

Description:
Some direct solvers, like frontal and sparse_direct, are able to automatically detect rigid
body motions (i.e kernel) in the factorization step of the local matrices [K]i (see page ??). But
some others, like sparse_dscpack, can not automatically detect these rigid body motions, so
they have to be indicated to it.

Using this latter solver, the **rigid_body command can be used to find the rigid body
motions of each sub-domain, using empirical geometrically criteria, and to write them in the
problem.cut and problem.cu files. It should be noticed that this command just runs in 3D

with impose_nodal_dof boundary conditions, in the global coordinate system.

Syntax:

**rigid_body

*nset nset1 . . . nsetN
*dof dof1 . . . dofN

*nset is the list of all nset names for which an impose_nodal_dof boundary condition
exists in the ****calcul module. If several dofs are imposed for an nset, the name of
this nset must appear several times.

*dof is the list of the correspondent dofs.

Note:
If the parallel computation is not a 3D one, or if other types of boundary conditions are
used, the **rigid_body command should not be used; and the rigid body motions have to be
directly specified at the end of the problem.cut file for each sub-domain using the following
syntax. It should be noticed that in this case, the problem.cu has to be removed.

**bc sd nrb
node 1 dof 1
. . .
node nrb dof nrb

Where

sd is the number of the sub-domain for which rigid-body motions are specified.

nbr is the number of rigid-body motions for sub-domain sd.

node i is a node number.

dof i is the dof name for the rigid-body motion at node i (e.g. U1, U2 or U3).

The information concerning nodes and dofs can be obtained by observing sub-domains, or
by running the same computation using a sparse direct linear solver and by stopping it just
after sub-domain matrices factorizations.

Note:
The sparse_dscpack direct linear solver should not be used if the rigid body motions of a
sub-domain change during computation.

Z-set — Non-linear material
& structure analysis suite 2.99

****mesher

***mesh

**rotate

**rotate

Description:
This command is used to apply geometrical rotation of node coordinates within a mesh. The
rotation will be specified using the same syntax as given for material rotations on page 3.137.

Syntax:

**rotate <ROTATION>

[*elset_name name]

Example:

***mesh PIPE

**open PIPE3

**rotate

*elset_name right_side

x1 1. 0. 0.

x3 0. 1. 0.

Note:
See also **symmetry, page 2.111.

Z-set — Non-linear material
& structure analysis suite 2.100

****mesher

***mesh

**scale

**scale

Description:
This command scales the coordinate values for the mesh by a specified factor. This can be
used to change units (e.g. inch-mm, meter-mm, etc).

Syntax:
The syntax is simply the command name followed by a floating point scale factor:

**scale factor

An extended syntax allows different scaling factors in each direction:

**scale xfactor yfactor zfactor

Z-set — Non-linear material
& structure analysis suite 2.101

****mesher

***mesh

**set reduced

**set reduced

Description:
This command alters the degree of integration used for the element. It is a convenience feature
to change quickly whether the elements are integrated fully or with reduced quadrature. With
this, one does not need to alter the element type in every domain in Zmaster.

Syntax:

**set_reduced

[*type reduced | normal]

[*elset elset1 ... elsetN]

*elset select specific elsets to be modified. The default is to modify every element in the
whole mesh.

*type reduced make the elements reduced integration, irrespective of their current value.

*type normal make the elements normal (full) integration, irrespective of their current
value.

The default is to set to reduced integration. See also set_normal (page 2.103).

Z-set — Non-linear material
& structure analysis suite 2.102

****mesher

***mesh

**set normal

**set normal

Description:
This command is the inverse of set_reduced (page 2.102): it forces normal (full) integration.
It has the same syntax and sub-commands.

Z-set — Non-linear material
& structure analysis suite 2.103

****mesher

***mesh

**sequential ids

**sequential ids

Description:
This mesher renumbers a mesh sequentially from given start values. The default start node
and element is one6.

Syntax:
The command has the following syntax:

**sequential_ids

*node_start st-node
*element_start st-node

6start numbers are available in 8.2+ only

Z-set — Non-linear material
& structure analysis suite 2.104

****mesher

***mesh

**small

**small

Description:
Sets nodal coordinates with absolute values smaller than a preset value to zero7. This may
be useful for instance for adding nsets with a criterion such as

**nset nset_name *function (z==0);

which will miss points that have very small non-zero z-coordinates due to numerical noise.
This command acts on all components of the position vector of the given nodes.

Syntax:

**small

[*limit limiting value]

[*nset nset name]

*limit enter the limiting value (real value) below which the coordinate value will be set
to zero. Negative values will have their minus chopped off. The default is 1.e-6.

*nset apply to the given node set. The default is ALL_NODE.

7Available in 8.2+ only

Z-set — Non-linear material
& structure analysis suite 2.105

****mesher

***mesh

**sort nset

**sort nset

Description:
This command sorts a node set in increasing order with respect to the value of a user-specified
function of the coordinates of the nodes.

Syntax:
The command has the following syntax:

**sort_nset

*nset_name nset-to-sort
*criterion function ;

[*n2_sort]

*nset name specifies the node set to sort. There is no default value.

*criterion enter a function of the coordinates in order to sort by. It is a function of
two points P1 (x1, y1, z1) and P2 (x2, y2, z2) within the nset (without the z1 and z2 for
two-dimensional meshes). It may also compare node ids (the corresponding variables
are named id1 and id2). The function must return whether P1 is ”greater” than P2:
criterion = -1 means P1 < P2 (no action taken), criterion = 0 means P1 = P2 (no action
taken) and criterion = +1 means P1 > P2 (the order of the points will be changed). Do
not forget the semicolon at the end. There is no default value.

*n2 sort uses a brute-force O(n2) sorting method, instead of the O(n log n) quicksort,
which is used by default. This option is included because the quicksort routine is broken
on some systems.

Example:

****mesher

***mesh out.geof

**open in_geof % mesh containing unsorted nsets left and radial

**sort_nset

*nset_name left

*criterion x1<x2; % sort nset according to increasing x. Note the ;

**sort_nset

*nset_name radial

*criterion (x1*x1+y1*y1+z1*z1)>(x2*x2+y2*y2+z2*z2); % sort nset

% according to decreasing distance from the

% origin [0. 0. 0.]. This generates an error

% message for two-dimensional meshes.

****return

Z-set — Non-linear material
& structure analysis suite 2.106

****mesher

***mesh

**split

**split

Description:
This is an interface for the ONERA splitmesh program which can be used to build the sub-
domain information for a parallel computation. There is a different interface for 8.0 and
8.2. 8.0 requires that the splitmesh executable be installed on your system (not supplied by
default), while it is integrated into 8.2.

Syntax:
For 8.0 the command has the following syntax:

**split

*splitmesh_location path
*domains num
*mincon int-value
*no_elset

*splitmesh location specify the path to the splitmesh executable program.

*domains enter the number of domains (separate processes) in a parallel computation.

*no elset don’t generate the element sets for domain visualization.

The syntax for 8.2 is the same, except that the *splitmesh_location is not required (or
available).

Example:
An example use follows from the test Parallel_test/INP/arm2.inp

****mesher

***split

**splitmesh_location /home/saturne/feyel/bin/splitmesh

**domains 4

***renumbering

**subdomain

***geof_format

**unformat

****return

Z-set — Non-linear material
& structure analysis suite 2.107

****mesher

***mesh

**sweep

**sweep

Description:
This command extends planar (2D or 3D shell/face) geometries into 3D Through a sweep
rotation. One may give an arbitrary rotation axis, point to make quite arbitrary sweeps. The
method works for linear/quadratic meshes in the positive or negative rotation directions. De-
generate cases are handled (inside edge is on the axis, so the inner elements become pyramids,
etc).

Extension may be given with different start/end meshes. In this case, the first mesh
is swept forward, while the second swept back. The mid point nodes are the interpolation
between the two.

Note:
please be careful concerning the order of elements between the two meshes (domains) in this
case. The topology must be equivalent.

If no elset is given the whole mesh will be used.

Syntax:

**sweep

[*elset eset1]

[*elset2 eset2]

[*new_elset new-elset]

[*angle degrees-rotation]

[*num num]

[*prog progression]

[*axis dir-vec]

[*center cent-vec]

[*fusion dist]

*elset eset1 defines the element set or faset which will be extended. There is no
limitation on the type of elements or faces contained on the face. Mixed order is not
allowed however. The default is all elements.

*elset2 eset2 This optional command makes the extension between two mesh/face sets as
given. Note that the mesh topology must be exactly the same. This command
is most useful with the mapped mesh domains available in Zmaster. The degenerate
case of 2 edges being the same (so the extended mesh forms a wedge) is handled. Do
not use *distance with this option.

*new elset new-elset This optional command gives the elset name for the created elements
instead of being the same as the input name.

*angle The angle to sweep through in degrees. May be positive or negative. The default
is 360 degrees.

*axis Use this command to specify the rotation axis in vector form. The default is
(0. 1. 0.).

Z-set — Non-linear material
& structure analysis suite 2.108

****mesher

***mesh

**sweep

*center Use this command to specify the rotation center in vector form. The default is
(0. 0. 0.).

*fusion specifies the distance below which 2 nodes are considered identical. Default value
is that of the global parameter Mesher.MeshFusion.

Z-set — Non-linear material
& structure analysis suite 2.109

****mesher

***mesh

**switch element

**switch element

Description:
This command is used to inverse the element axis orientation. Note that the element orien-
tation can be visualised in Zmaster.

Syntax:
The command has the following syntax:

**switch_element

*elset elset-name
*axis axis

The options for this command are described below:

*elset is the elset to which the inversion is applied

*axis Give the axis aorund which the rotation is performed

Z-set — Non-linear material
& structure analysis suite 2.110

****mesher

***mesh

**symmetry

**symmetry

Description:
This command is used to do a symmetry of a nset. Its modifies nodal positions by a symmetry’s
transformation (central, axial or planar), described with a point and a normal. The type line
is only valid for 2D meshes (input vectors should have 0. as z-coordinate), and the type plane
is only valid for 3D meshes.

Syntax:
The **symmetry command takes the following syntax:

**symmetry

*type [point | line | plane]
*point origin-point
*normal normal-vector

[*nset nset]

*type Defines the type of symmetry’s axe : a point, a line or a plane.

*nset The nset whose you want to transform (default value: ALL_NODE).

*point This defines the origin for the type of symmetry.

*normal Normal’s direction for the projection of the symmetry.

Example:
The following example shows the use of symmetry of the x− z-plane for all points:

**symmetry

*type plane

*nset ALL_NODE

*point (0.,0.,0.)

*normal (0.,1.,0.)

Z-set — Non-linear material
& structure analysis suite 2.111

****mesher

***mesh

**thicken bset

**thicken bset

Description:
This command is used to add a layer of elements on a specified bset. This is sometimes
necessary before using a boolean operation (page 2.13).

Syntax:
The command has the following syntax:

**thicken_bset

*bset bset-name
*height height-of-elements

[*direction vector]

[*towards point]

*bset elements are attached to the specified bset. There is currently no default.

*height specifies the height of the newly built elements (default is 1).

*direction specifies a direction for the extension.

*towards is an alternative to *direction: elements are built towards the specified point
(or away from, if height is negative).

Example:

****mesher

***mesh trench.geof

**open trench_for_difference.geof

[...]

**thicken_bset

*bset TheSurface

*height -30.

*towards (0. 0. 0.)

****return

Z-set — Non-linear material
& structure analysis suite 2.112

****mesher

***mesh

**to 2d

**to 2d

Description:
This command transform 3d meshes into 2d meshes. This command only modify the dimen-
sion of node location vector.

Syntax:
The command has the following syntax:

**to_2d

Z-set — Non-linear material
& structure analysis suite 2.113

****mesher

***mesh

**to 3d

**to 3d

Description:
This command transform 2d meshes into 3d meshes. This command only modify the dimen-
sion of node location vector.

Syntax:
The command has the following syntax:

**to_3d

Z-set — Non-linear material
& structure analysis suite 2.114

****mesher

***mesh

**to cax

**to cax

Description:
This command transform 2d plane meshes into axisymmetric meshes.

Syntax:
The command has the following syntax:

**to_cax

In pratice, this command symply changes the element types, from c2d to cax.

Z-set — Non-linear material
& structure analysis suite 2.115

****mesher

***mesh

**transform fili

**transform fili

Description:
This command is used to correct a mesh previously imported from Abaqus and generated by
the SAFRAN FILI tool. It replaces degenerated elements with Z-set standard ones (prism
and pyramid elements).

In some cases this mesher may fail on quadratic meshes, so it is recommended to work on
linear meshes only (see the lin_to_quad mesher on page 2.71).

Syntax:
The command has the following syntax:

**transform_fili

[*elset elset-name]

*elset specifies the elset where the operation is applied (default is to correct the whole
mesh).

Z-set — Non-linear material
& structure analysis suite 2.116

****mesher

***mesh

**translate

**translate

Description:
This command is used to apply a rigid body translation of the mesh.

Syntax:
The syntax consists of the command name followed by the 3 translation components:

**translate dx dy dz

The command also has an extended syntax that provides additional functionalities:

**translate

*x dx
*y dy
*z dz
*nset nset-name
*nodes node1 ... nodeN
*elset elset-name

*x, *y, *z specifies the translation

*nset restricts the translation to the given nset

*nodes restricts the translation to the given node ids

*elset restricts the translation to the given elset

Example:

**translate 0. -5.5 -1.0

Z-set — Non-linear material
& structure analysis suite 2.117

****mesher

***mesh

**unconnected parts

**unconnected parts

Description:
This command creates one elset per disconnected part of an input mesh: a new list of elsets
is created (part1, ..., partN), with N the number of disconnected parts of the input mesh.

Syntax:

**unconnected_parts

The command has no options.

Example:
An example is shown below:

****mesher

***mesh

**open sphere_cylinder.geof

**unconnected_parts

****return

Z-set — Non-linear material
& structure analysis suite 2.118

****mesher

***mesh

**union

**union

Description:
This command creates the union of meshes.

Syntax:

**union

*add mesh-name
[*elset eset-name]

[*merge_nset merge]

[*set_change_name chg-name] % 8.2 (obsolete)

[*set_base_name base-name] % 8.2 w(obsolete)

[*base_name base-name]

[*tolerance val]

[*translate_new_meshes] % 8.2 (obsolete)

[*tr trans-vector] % 8.2 (obsolete)

[*translate trans-vector]

*add mesh-name adds the mesh in file mesh-name.geof to the active mesh.

*elset eset-name A new element set will be created with the name eset-name and
containing all the elements added in this operation.

*merge nset limit the fusion of nodes to the given node set. The node set is on the current
mesh, not the newly added mesh given by mesh-name.

*base name rename all sets from old-name to base-name.old-name.

*tolerance Gives the critical distance for node fusion between the two meshes. If too
large, elements will collapse because node neighbors are joined, too small and there may
be gaps at the interface. Use zero to join two meshes without node fusion, such as in
the joining of two parts in contact. The default variable is in the global parameters,
probably 1.e-3 (in the dimension of the mesh).

Example:
A short example follows of some union sections from the test case in
Mesher_test/INP/PIPE.inp

**union

*add pipe-data/PIPE1.geof

*elset PIPE1

*tolerance 0.15

**union

*add pipe-data/PIPE2.geof

*elset PIPE2

*tolerance 0.15

Z-set — Non-linear material
& structure analysis suite 2.119

****mesher

***mesh

**unshared edges

**unshared edges

Description:
This command makes an edge boundary set (liset) for the outer edges of a mesh. It operates
similarly to the **unshared_faces for 2D meshes, and produces an edge output.

Syntax:

**unshared_edges bset-name
*elset elset1 ... elsetN

*elset used to specify a number of elements sets to find the unshared faces rather than the
whole mesh. Note this still gives the faces which are not shared with any other element,
whether in the listed elsets or not. It is just that the faces checked are a sub-set of the
total mesh, and the resulting set will be on the named elsets only.

Z-set — Non-linear material
& structure analysis suite 2.120

****mesher

***mesh

**unshared faces

**unshared faces

Description:
This command makes a boundary set (which can be converted to an nset using **nset) from
the outer boundary of a given element set, or of the whole mesh.

Syntax:

**unshared_faces bset-name
[*elsets elset1 ... elsetN]

*elsets used to specify a number of elements sets to find the unshared faces rather than the
whole mesh. Note this still gives the faces which are not shared with any other element,
whether in the listed elsets or not. It is just that the faces checked are a sub-set of the
total mesh, and the resulting set will be on the named elsets only.

Note:
This command is currently faster than the **bset bset-name *surface equivalent.

Note:
This command replaces the deprecated and ambiguous **unshared command.

Z-set — Non-linear material
& structure analysis suite 2.121

****mesher

***mesh

**volume to shell

**volume to shell

Description:
Starting with a 3D volume mesh, this command extracts the given bset and creates the
corresponding surfacic 3D-shell mesh.

Syntax:
The command has the following syntax:

**volume_to_shell

[*bset bset-name]

*bset specifies which bset to extract. The default is to extract the whole mesh skin.

Z-set — Non-linear material
& structure analysis suite 2.122

****mesher

***mesh

**yams ghs3d

**yams ghs3d

Description:

This command can be used for remeshing an input Zébulon mesh by means of the DIS-
TENE remeshing tools. There are basically 3 different pieces of software that may be used to
build the new mesh:

• i) Yams is used for remeshing a surface mesh (that may be built from the skin of a 3D
mesh or directly from a shell mesh) according to various criterions,

• ii) Ghs3d is a general purpose 3D mesher that takes as input a surface mesh and fills
the volume with thetrahedras,

• iii) given a metric map, Meshadapt performs either surface, volume, or surface+volume
adaptation at the same time. The metric map is made of the desired sizes of vertices
(edges) connected to each vertex (node) of the mesh. Since this map is given on the
initial mesh, several iterations may be needed in the adaptation process.

Those tools are fully interfaced for Zébulon and the yams_ghs3d command automati-
cally writes out DISTENE input and reads in DISTENE output files to build the Zébulon
mesh. DISTENE binaries are included in the standard Zébulon distribution (in the
$Z7PATH/PUBLIC/lib-$Z7MACHINE/Zmesh/ folder), but an optional license key is needed to
run those softwares. Yams, Ghs3d, and Meshadapt manuals are also available in the Zmesh/
folder, and the user may have a look at those if a fine tuning of the remeshing process is
needed.

Note that only linear elements are handled by yams_ghs3d. A combination of the
quad_to_lin (before yams_ghs3d) and lin_to_quad commands (after) may then be used
to allow the use of quadratic meshes. Warning: if a computation result is available, the mesh
will be deformed before remeshing.

Syntax:
The command has the following syntax:

**yams_ghs3d

[*yams_only]

[*nb_iter_surf niter-surf]

[*nb_iter_vol niter-vol]

[*nb_iter niter]

[*force_meshadapt]

[*refinement_origin origin-nset]

[*refinement func(x,y,z) ;]

[*refinement_file fname]

[*absolu]

[*min_size min]

[*max_size max]

[*gradation grad]

[*tolerance tol]

[*optim_style opt]

[*preserve_faset bset-name1 bset-name2 ...]

Z-set — Non-linear material
& structure analysis suite 2.123

****mesher

***mesh

**yams ghs3d

[*preserve_liset bset-name1 bset-name2 ...]

[*yams_options yams-options]

[*ghs3d_options ghs3d-options]

[*meshadapt_options meshadapt-options]

*yams only forces surface remeshing only (ie. performing only step i)).

*nb iter surf if a metric map is given, this command allows to specify the number niter-
surf of iterations involved in step i) to satisfy a given metric map for the surface mesh
(default is niter-surf=3).

*nb iter vol if a metric map is given, this command allows to specify the number niter-vol
of iterations involved in step iii) to satisfy a given metric for the volume mesh (default
is niter-vol=2),

*nb iter this command can be used to define both niter-surf and niter-vol at the same
time (niter-surf=niter-vol=niter in this case).

*force meshadapt when a metric map is given as input to drive the remeshing process,
this option has the effect to force the use of Meshadapt instead of Yams during step
i). Note that in this case Meshadapt is run only 1 time during step i) (option -O1 for
surface adaptation) and nb iter times during step ii) (option -O3 for surface+volume
adaptation),

*refinement origin this command is used to define the name origin-nset of an nset
taken as a base to calculate the metric map according to function func(x,y,z) (see next
command),

*refinement this command defines the function func(x,y,z) used to compute the metric
map (see explanations in the Metric map calculation paragraph). Note the only
variables allowed in this function are x, y or z and that the definition should end with
a ";" character.

*refinement file with fname the name of a metric map file (the file syntax is explained
in the Metric map calculation paragraph).

*absolu is a Yams option and is only used during step i). In this case edge sizes (arguments
of the *min_size or *max_size commands, and/or values given in the metric map) are
absolute values. The default alternative is to use relative values (ie. sizes are scaled by
size of the bounding box of the initial mesh, see the Yams user manual).

*gradation grad is a Yams only option (step i) that may be used to control the element
size variation (please refer to the Yams user manual).

*tolerance tol is a Yams only option (step i) used to set the value tol of the maximum
chordal deviation tolerance (please refer to the Yams user manual).

*optim style opt is a Yams only option (step i) and can be used to specify the type of
optimization style (coearsening, enrichment etc... please refer to the Yams user manual).
Default is opt=2 for geometrical mesh enrichment.

Z-set — Non-linear material
& structure analysis suite 2.124

****mesher

***mesh

**yams ghs3d

*preserve XXset used to preserve set(s) during surface remeshing. This can only be
applied to set(s) located on the mesh skin and it does not mean that the exact set(s)
topology should be kept (set(s) is/are rebuilt after the remeshing process: position and
element type could have changed).

*yams options , *ghs3d_options and *meshadapt_options commands are meant for ad-
vanced DISTENE tools users, and allow to specify manually the DISTENE softwares
command line options (see user manuals in the Zmesh/ folder). Default values are in
general appropriate for typical Zébulon applications.

Calculation of the metric map

The metric map is defined by a set P of base points with the target element sizes near
those points:

P = { Pi(xi, yi, zi) , di ; i = 1, ..., nb }
where nb if the number of base points, Pi a particular point in P with coordinates (xi, yi, zi)
and a prescribed size of di.

P may be defined either by commands *refinement_origin or *refinement_file:

*refinement_origin origin-nset fills P with points corresponding to nodes in nset
origin-nset,

*refinement_file fname defines the name of a file containing Pi, di. Syntax of this
ASCII file is the following one:

– first line:
nb (number of base points: 1 integer)

– line 2 to nb + 1
xi yi zi di (definition of Pi coordinates and prescribed size: 4 double values)

Then for each node N in the current mesh, the prescribed size d(N) of element edges built
from node N is calculated in the following way:

• first, find closest point P ∗ from N in set P:
P ∗ such that distance(P ∗, N) = Min { distance(Pi, N) , i = 1, ..., nb }

• then, if a function func(x,y,z) is given by means of command *refinement:

d(N) = func(x∗, y∗, z∗)

with (x∗, y∗, z∗) the coordinates of point P ∗,

• else:
d(N) = d∗

with d∗ the prescribed size given for point P ∗ in P.

• finally, if either commands *min_size min or max_size max are specified:
if d(N) <min then d(N) =min
if d(N) >max then d(N) =max

Z-set — Non-linear material
& structure analysis suite 2.125

****mesher

***mesh

**yams ghs3d

Note that the option *absolu is advised in this case to insure that d(N) values calculated
do correspond to actual edge sizes in the finite element mesh.

Example:

See tests in folder $Z7PATH/TESTS/Distene test/INP/.

****mesher

***mesh output

**open input.geof

**yams_ghs3d

*force_meshadapt

*nb_iter 3

*absolu

*min_size 0.03

*max_size 0.2

*preserve_faset haut-ext bas-ext U1=0 U3=0

*refinement_origin bas-ext

*refinement x*x+y*y+z*z;

****return

Z-set — Non-linear material
& structure analysis suite 2.126

****mesher

***mesh

**yams by elset

**yams by elset

Description:

This command is derived from **yams_ghs3d mesher, and can be seen as a “mesher
modifier”. It allow to preserve elsets topology during yams_ghs3d remeshing process. This
is achieved by internally providing a “color” for each named elset. The colored areas borders
topology are then “protected”.

Syntax:
The command has the following syntax:

**yams_by_elset

[*elset elset-name1 elset-name2 ...]
[current "**yams_ghs3d" options]

*elset names of elsets to be preserved.

Example:

See tests in folder $Z7PATH/TESTS/Distene test/INP/.

****mesher

***mesh cyl4

**open cyl.geof.ref

**yams_by_elset

*elset center attach

%%% yams_ghs3d options

*force_meshadapt

*nb_iter_surf 1

*nb_iter 3

*absolu

*min_size 0.1

*max_size 0.1

*refinement 0.1;

****return

Z-set — Non-linear material
& structure analysis suite 2.127

****mesher

***mesh

**refine elset

**refine elset

Description:

This command is derived from **yams_ghs3d mesher, and can be seen as a “mesher
modifier”. it allow to remesh a single elset using yams_ghs3d remeshing process, without
modifying neighboring element. This is achieved by extracting the target elset in a separate
mesh and imposing the conservation of the interface (interface : the skin shared between the
elset and the remaining of the mesh).

Syntax:
The command has the following syntax:

**yams_by_elset

[*elset elset-name]

[*material_elset material elset name]

[current "**yams_ghs3d" options]

*elset name of elset to be remeshed.

*material elset this command can be used for multi-material models. It will add all
elements created by remeshing elset ”elset name” to elset ”material elset name”.

*maxsize (inherited from **yams_ghs3d) note that by default the element max size is
automatically calculated as the maximum size of element at the interface of remeshed
elset note that

Example:

See tests in folder $Z7PATH/TESTS/Distene test/INP/.

****mesher

***mesh cyl3

**open cyl.geof.ref

**refine_elset

*elset center

*material_elset ALL_ELEMENT

%%% yams_ghs3d options

*nb_iter 3

*absolu

*min_size 0.03

*preserve_faset haut-ext bas-ext U1=0 U3=0

*refinement_origin bas-ext

*refinement y*y;

****return

Z-set — Non-linear material
& structure analysis suite 2.128

****mesher

***mesh

**remesh from results

**remesh from results

Description:

This mesher allow to build a metric map (for Disten tools) based on the results of a
previous computation. The metric map definition can be found in **yams_ghs3d section or
in the Disten manuals. It can be useful to refine a mesh according to the gradient of given
field or an a posteriori error estimator.

In this mesher, the metric map can be partially computed from results over a defined
elset, the remaining of the map (corresponding to elset complement to the mesh) is simply
filled with the actual mesh metric. We can also in this case choose a conservative remeshing
based on refine_elset (outside elset will remain unchanged) or a less conservative remeshing
based on yams_ghs3d (outside elset will change but keeping the same characteristic element
length).

Syntax:
The command has the following syntax:

**remesh_from_results

[*result_name result-file-name]

[*Z8]

[*var var-name]

[*card card-number]
[*power power-coefficient]
[*free_interface]

[current "**refine_elset" options]

*result name results file name

*Z8 add it to specify that results are in Z8 format (.zres folder). if omitted Z7 format is
assumed

*var name of the variable in the results database to be used for metric computation.

*card index of the results card to be used for metric computation.

*power modify the value of the variable var such that var = varpower

*free interface if set, activate the “less conservative remeshing” otherwise the
refine_elset strategy is used

Example:

See tests in folder $Z7PATH/TESTS/Distene test/INP/.

****mesher

***mesh cylr4

**remesh_from_results

Z-set — Non-linear material
& structure analysis suite 2.129

****mesher

***mesh

**remesh from results

*result_name CYL/cyl

*var sig22

*card 2

*power 0.5

*free_interface

%%% refine_elset/yams_ghs3d options

*elset center

*absolu

*min_size 0.01

*max_size 0.15

*nb_iter 3

*preserve_faset haut-ext bas-ext U1=0 U3=0

****return

Z-set — Non-linear material
& structure analysis suite 2.130

Chapter 3

Finite Element (.inp file)

Z-set — Non-linear material
& structure analysis suite 3.1

Introduction

Description:
This chapter concerns the definition of finite element problem solutions with the Zebulon
solver, and is indicated under the main command ****calcul. The FEM problem definition
will be given by a primary file with name problem.inp, and also several auxiliary files, as
required. The prefix problem will be used in other input and output file names, and is
henceforth called the problem name. Generally, a geometry specification file is required with
the default name problem.geof, where the nodes, elements, and other geometrical information
is given. It should be noted that the geometry file does not describe the type of element
(formulation), which will be defined in the .inp file. Frequently a separate material file is
given as well, but this information may be added to the .inp file just as easily.

The FEM calculation mode of Z-set reads and interprets all the non-commented instruc-
tions in the main .inp file between the commands ****calcul and ****return. Other
problem modes may therefore be, in the same file, demarcated by commands starting with
four asterisks.

In the file .inp we may give references to the names of other files for the material files,
geometry files, or other data files such as external temperature fields, initial values for the
material variables, etc. These files will be discussed throughout the command summary here,
and in the section on file formats (page 5.10).

An overview of the functions to which the .inp file serves is given below:

• Define the nature of the calculation: mechanical, thermal steady-state, thermal tran-
sient, etc.

• To give complementary information of the geometry or formulation of the calculation.
For example, if a 2D problem is in plane stress or plane strain conditions, in finite strain
formulations, etc.

• Give the boundary conditions. These include specification of the degrees of freedom
and the associated forces (e.g. displacement and point forces), as well as calculated
conditions such as pressure or centrifugal forces. With the exception of eigen frequency
analysis, the boundary conditions must all be prescribed in the time scale of the calcu-
lation. In the case of a static mechanical calculation, the time may not have a physical
significance, but is rather used as a fictitious measure of the loading processes. For
example, in order to calculate a static structure in three loading cases, we can write the
boundary condition evolutions as a function of dimensionless times 1, 2, and 3.

• Assign groups of elements (element sets or elset) a material file specifying the material
law and its coefficients. Each material file is also assigned an integration method if
necessary. The separation of the finite element model and numerical integration allows
one to work with a small base of material files for many calculations with different
numerical methods.

• Define the method(s) of global solution, and define the solution steps which must be
made in a non-linear calculation. This data will include the algorithm used (Newton-

Z-set — Non-linear material
& structure analysis suite 3.2

Raphson, BFGS,...) the convergence criteria, and automatic time stepping methods.
The time used here defines the time measure used for all other parts of the problem
definition such as the boundary conditions.

• To define tables as a function of time. Specification of numerous parameters in the
calculation such as the boundary condition amplitudes will be defined by these tables.

• Specify output for whole-model fields, and directly computed curves which are gener-
ated during the calculation. Multiple output “blocks” may be specified, with different
frequencies of output, etc.

Linear solution:
Linear solutions typically involve a number of “loading cases” which are normally superim-
posed to a structures response to many different external solicitations. There is now a special
key given in the output section **linear solution (see page 3.149).

Z-set — Non-linear material
& structure analysis suite 3.3

Time stepping:
The success of a nonlinear calculation depends on definition of appropriate loading sequences.
The following figure summarizes the basic elements of loading sequences:

0
0

bl
oc

k
2

bl
oc

k
1

N times
repeted bl

oc
k

3
, e

tc

time

ta
bl

e
va

lu
e

Load change inbetween
sequences (bad)

This example shows the waveform desired for a particular parameter in the calculation
(such as a loading level). On the x-axis is the time scale of the calculation, broken into
segments (long dashed lines) and increments (dotted lines). The y-axis represents the loading
level described by a hypothetical table. The sequences are put into groups any of which can
be repeated to give cyclic loadings.

The function of sequences is to demarcate segments of a particular solution strategy in
the linear progression of time from t1 to t2 with t2 > t1. During the sequence the solution
parameters such as convergence criteria, method of stiffness matrix resolution, etc are fixed.

Increments which divide the sequence are used to refine the incremental solution in a linear
manner (normally through steady changes in loading). The increment in time during each
loading increment is therefore ∆t = t2 − t1

n for n increments. For nonlinear solutions, within
each increment convergence may require several trial solutions which will be called iterations.

An alternative to the linear division is to give progressively increasing or decreasing steps,
or automatic calculation of the increments. This later allows stepping as a function of the
problem variables for accuracy control, as well as in function to the convergence rate, etc for
divergence control.

As the loading magnitudes are given in terms of time, and not directly in terms of the
segment numbers, incompatibility in the load waveforms with the sequences is available. This
is schematically shown in the above figure within the second load sequence. Here the load
changes at the end of the third increment of the second sequence, which is one increment
away from the sequence end. This type of loading is not advised, and should be cautiously
verified in the case of complex loadings (e.g. cyclic or otherwise lengthy).

With these terms defined, we may progress with the command summary for the FEM
problem loading. To clarify their meaning however, it may be very useful to follow several of

Z-set — Non-linear material
& structure analysis suite 3.4

the example problems given in the example section of the manual.

Specifying node sets:
Node sets are defined in the .geof file, which is created by meshing operations. In commands
which require a nset, give the character name for the node set desired, as appears in the
.geof file. An additional shortcut exists for the case of specifying all the nodes in the mesh.
In this case, the keyword ALL_NODE may be used for the node set name.

Specifying element sets:
Element sets are defined in the .geof file as well, defining lists of element numbers which may
be identified together. These sets will be used to assign particular element formulations to
regions in the mesh, material behaviors, boundary conditions, etc. As for node sets, element
sets are identified by their full name given in the .geof file. The entirety of elements in a
mesh may be identified with the shortcut keyword ALL_ELEMENT to be used in the place of a
user-defined set name.

Specifying magnitudes:
The magnitudes of commands (particularly boundary conditions) will be controlled using
either tabular or functional values. The definition of tables and functions are treated as a
major element of the user input file definition (at the *** level). The commands to assign
tables is ***table and functions ***function, each of which will create an object or objects
with a name attribute. Giving names to the functions / tables provides a means for access
in other objects which will use them to calculate magnitudes in time. The program structure
is such that tables or functions may be referenced before their definition, so the ***table

and ***function commands may appear anywhere in the valid three asterisk command level
under ****calcul.

The code now accepts pre-defined magnitude names. The most useful of these1 is time

which provides a magnitude equal to the current time.

1in fact, the only current one

Z-set — Non-linear material
& structure analysis suite 3.5

Specifying command parameters:
Many of the commands (especially boundary conditions) take particular parameters to define
the actual command applied. These may be character string names, integers, floating point
values, vectors, etc. The program is rather strict about typing these data, in order to ensure
that what is read is indeed what was intended. The following summary is thus provided to
define the syntax data types:

• character values character values refer to alphanumeric character strings, which may
include some symbol characters such as - = +, but not delimiting characters such as
spaces or commas. The string is terminated at the next newline, space, tab, comma,
or comment character % or #. Character values may be up to 255 characters long, but
will never be shortened.

• integer values these are numeric fields separated by the standard delimiters (as in
character strings), and must only be composed of the digits 0-9 with no decimal points.
Decimal values found for integers will produce an error message.

• real values real values are used to specify decimal numbers. They may be positive,
or negative, and must include a decimal point. Exponential notation is allowed. Some
examples are 1.29 5.e+6.1 0.314159E-1.

• vector values vectors define either a point in 2D or 3D space, or the components of
a vector direction in space. The size of the vector should be coherent with the spatial
dimension of the problem. Vectors are always surrounded by parenthesis () and take
only real data for their components. example: (1. .5 .5).

Z-set — Non-linear material
& structure analysis suite 3.6

****calcul

****calcul

Description:
This command marks the beginning of a FEM calculation definition. The Z-set program in
FEM mode will search this command and interpret all the sub-commands until the termination
token ****return is reached. A keyword following the ****calcul token will indicate the
type of calculation which is to be made.

Syntax:
The calculation will be defined using the following syntax:

****calcul type
options

****return

The calculation types which are possible are listed below:

CODE DESCRIPTION

mechanical static mechanical (no inertial effects)

eigen eigen frequency analysis

dynamic mechanical with inertial effects (implicit)

explicit mechanical explicit solver for structural dynamics

thermal steady state stationary thermal calculation

thermal transient transient thermal calculation

diffusion Ficks Law diffusion analysis with multiple

phases

weak coupling Generalized coupled analysis

In the absence of a type, the default will be mechanical.
The basic components of the allowable input data after ****calcul are summarized be-

low2:

2More options may exist. Later versions of the code output all available command names with the -H

switch.

Z-set — Non-linear material
& structure analysis suite 3.7

****calcul

CODE DESCRIPTION

***mesh used to specify the types of elements in a mesh, or give an

alternate geometry file name

***restart requests that the calculation be continued from a previous

stored result

***resolution used to declare the solution procedures including the load-

ing sequences

***equation declare relationships between entities (multi-point con-

straints) within the calculation

***impose kinematic imposes a geometrical evolution for problems which do not

have displacement variables but do have an integration vol-

ume which changes (thermal, diffusion).

***sub problem used to define a sub-problem in the sequential weak cou-

pling algorithm; may be post calculations or re-meshing

operations as well.

***parameter allows specification of externally calculated (given) parame-

ters which may be used to alter the material characteristics

during the calculation

***contact defines surfaces of possible contact and the method of en-

forcement in the event there is contact

***bc specify both the geometrical and force boundary conditions

Z-set — Non-linear material
& structure analysis suite 3.8

****calcul

***table specify the tabular loading magnitudes for parameters and

boundary conditions

***function specify functional loading magnitudes for parameters and

boundary conditions in terms of the time

***material gives the information for material files as attached to el-

ement sets, local integration methods, material rotations,

and initial variable values

***output used to specify the desired output from the analysis; mul-

tiple output sections can be given to optimize the solution

storage

Z-set — Non-linear material
& structure analysis suite 3.9

****calcul dynamic

****calcul dynamic

Description:
This option of the ****calcul command indicates that dynamic effects should be taken into
account. The solution procedure is either an implicit d-form of the Newmark time integration
scheme or the α-method form Hilber, Hughes and Taylor. These methods are compatible
with all mechanical element formulations. Most of the following explanations can be found in
[hughes87] and [belytschko00]

The semi-discrete equation of motion (discretized in space, continuous in time) is written
as:

Ma(t) + Fdamp(v(t)) + Fint(d(t)) = Fext(t) (1)

where d(t), v(t) = ḋ(t) and a(t) = v̇(t) are the vectors of nodal displacement, velocity and
acceleration respectively. M is the mass matrix and Fdamp and Fext(t) are the nodal vectors
of damping and external forces respectively. The following initial conditions hold:

d(0) = d0 (2)

v(0) = v0 (3)

The linear (or linearized) form of equation (1) reads:

Md̈ + C(ḋ) + K(d) = Fext (4)

where C and K are the damping and rigidity (or tangential rigidity) matrices respectively.

Newmark schemes:

The methods of the Newmark family consist in discretizing equation (4) in time in the
following way:

Mat+∆t + Cvt+∆t + Kdt+∆t = Ft+∆t
ext (5)

dt+∆t = d̃
t+∆t

+ ∆t2βat+∆t (6)

vt+∆t = ṽt+∆t + ∆tγat+∆t (7)

where the predictors (known from the previous increment) d̃
t+∆t

and ṽt+∆t are defined by:

d̃
t+∆t

= dt + ∆tvt +
∆t2

2
(1− 2β) at (8)

ṽt+∆t = vt + ∆t (1− γ) at (9)

dt, vt and at are approximations of d(t), ḋ(t) and d̈(t) respectively. Parameters β and γ
determine the stability and accuracy of the algorithm.

There are several possible implementations of the Newmark algorithm. The one used in
Z-set is the d-form, meaning that the equations are solved in terms of d (i.e. not in terms of
a or v). The linear system to solve then reads:(

1

β∆t2
M +

γ

β∆t
C +K

)
dt+∆t = Ft+∆t

ext +

(
1

β∆t2
M +

γ

β∆t
C

)
d̃
t+∆t − Cṽt+∆t (10)

Z-set — Non-linear material
& structure analysis suite 3.10

****calcul dynamic

Note that the choice β = 0 (corresponding to the explicit Newmark algorithm if M and C
are diagonal) is not suitable for the d-form.

α-method (HHT):

The α-method introduced by Hilber, Hughes and Taylor owns to a more general class of
integration schemes called linear multisteps methods (LMS). The α-method is only slightly
different from the Newmark one: the update equations (6-9) are conserved, the difference lies
in the time-discrete equation which now reads:

Mat+∆t + (1−α)Cvt+∆t +αCvt + (1−α)Kdt+∆t +αKdt = (1−α)Ft+∆t
ext +αFt

ext (11)

By setting α = 0, the Newmark family of time integration methods is recovered. The α-
method is usually used with the following set of parameters:

γ =
1

2
+ α β =

(1 + α)2

4
α ∈

[
0,

1

3

]
(12)

The reasons of this choice will be explained in the following section.

Linear problems:

For linear problems, the behaviors of the Newmark and α-methods are well known. To
select the appropriate set of parameters (α, β, γ), three points are of particular importance:

• stability (conditional or unconditional)

• order of convergence

• controllable algorithmic dissipation of the high-frequency modes

The last attribute if often desirable in structural dynamics problems. High-frequency modes
are poorly approximated by the spatial finite element discretization. By employing algorithms
with high-frequency dissipation, spurious high-frequency response is damped out. Properties
of some classical methods are summarized in Table 1. Generally, the stability condition reads:

unconditional 2β ≥ γ ≥ 1

2
(13)

conditional γ ≥ 1

2
, β <

γ

2
⇒ ωh∆t ≤ Ωcrit (14)

Where ωh corresponds to the highest pulsation of the spatially discretized problem (h is related
to the spatial discretization, i.e. to the size of the finite elements) and Ωcrit depends on the
physical damping parameter. It can be shown that ωh is bounded by the maximum element
pulsation ωh ≤ ωhe which increases when h decreases. As a consequence, for conditional
stability, the critical time step decreases with decreasing element size. Moreover, selecting γ =
1
2 ensures a second order accuracy but adds no damping of high-frequency modes. Selecting
γ > 1

2 = 1
2 +α allows artificial (purely numerical) damping of spurious high frequency modes.

This damping is maximized for β = (1+α)2

4 . Within the Newmark framework, this choice leads
to a first-order accuracy whereas a second-order accuracy is achieved with the α-method, and
this is the main advantage of the α-method compared to the Newmark one. Note that damping

Z-set — Non-linear material
& structure analysis suite 3.11

****calcul dynamic

Method β γ Stability condition order
of ac-
curacy

Central difference 0 1
2 ωh∆t ≤ 2 2 not suitable for

the d-form

Linear acceleration 1
6

1
2 ωh∆t ≤ 2

√
3 2 no HF damping

Fox-Goodwin 1
2

1
2 ωh∆t ≤

√
6 2 no HF damping

Average acceleration
(trapezoidal rule)

1
4

1
2 unconditional 2 no HF damping

Newmark modified av-
erage acceleration (α >
0)

(1+α)2

4
1
2 + α unconditional 1 HF damping

proportional to
α

α-method (α > 0) (1+α)2

4
1
2 + α unconditional 2 HF damping

proportional to
α

Table 1: Properties of some classical methods for linear dynamics. Stability conditions are
given for physically undamped problems.

is proportional to α and that low-frequency modes are affected more strongly for higher values
of α.

Nonlinear problems:
The notion of stability and accuracy developed for linear dynamics are not sufficient for
nonlinear problems. The use of the previous rules does not guarantee stability.

Syntax:

Dynamic calculations accept a subset of the ****-level commands, with an additional
***init_velocity command used to specify initial velocity conditions. The dynamics specific
commands are found in the following table:

CODE DESCRIPTION

***resolution same as for the static case with specification of the time

integration scheme parameters α, β and γ within the se-

quence definition (see **sequence)

***init velocity set up initial velocities

The command ***init_velocity has the following syntax:

***init_velocity

dof name elset elset name value

By default, the initial velocity is set up to 0 everywhere.

The selection of the integration scheme (Newmark or α-method) and the parameter defi-
nition can be done within the **sequence block (see page 3.190) through optional commands

Z-set — Non-linear material
& structure analysis suite 3.12

****calcul dynamic

*alpha, *beta and *gamma. All other **sequence sub-commands are available and remain
unchanged.

**sequence [N]

[*alpha val1 [val2, valN]]

[*beta val1 [val2, valN]]

[*gamma val1 [val2, valN]]

These commands can be used with the following increasing level of description:

• none of these command is used. The α-method is selected with α = 0.05, β = (1+α)2

4
and γ = 1

2 + α.

• only *alpha is used. This selects the coefficients of the α-method with β = (1+α)2

4 and
γ = 1

2 + α.

• only *alpha and *gamma are used. This selects the coefficients of the α-method with

β =
(1
2

+γ)2

4 .

• *alpha, *beta and *gamma are used. The three parameters are defined independently.

To select the Newmark integration scheme, α must be set to 0. Due to its unconditional
stability and good convergence rate, it is recommended using the α-method in accordance
with relations (12), even for non-linear problems.

Example:
An example implicit dynamic calculation follows. In the first sequence a Newmark average
acceleration scheme is selected. In the second one, an α-method with α = 0.1 has been chosen.
Initial velocity of nset INIT1 is set up to 0.1. Note the expiring boundary condition to move
and then release a load point.

****calcul dynamic

***mesh updated_lagrangian_plane_strain

***resolution

**sequence

*dtime 1.0 1.0

*increment 10 10

*alpha 0. 0.1

*ratio absolu 1.e-6

*algorithm p1p2p3

***bc

**impose_nodal_dof

wall U2 0.0

wall U1 0.0

load exp U2 -1.0 tab

***table

**name tab

*time 0.0 1.

*value 0.0 1.

***init_velocity

Z-set — Non-linear material
& structure analysis suite 3.13

****calcul dynamic

U1 elset INIT1 0.1

***output

**curve dynam_ul.test

*node_var 6 U2

***material

*file ../MAT/dynam_ul

****return

Z-set — Non-linear material
& structure analysis suite 3.14

****calcul mechanical explicit

****calcul mechanical explicit
Description:

This option of the ****calcul command is used to activate the explicit solver. Such a solver
can be used to model and capture short time scale phenomena such as waves propagation.
Explicit solvers can although be used for rough problems like crash, impact or metal sheet
forming where contact occurs on large surfaces (contact is very rough from a computational
point of view).

Central difference explicit schemes:
The central difference explicit scheme can be derived from the Newmark integration scheme
(eq. (5)–(9) of the ****calcul dynamic section) with β = 0 and γ = 0.5. The a-form of the
integration scheme then reads:(

M +
∆t

2
C

)
at+∆t = Ft+∆t

ext −Cvt+∆t/2 −Kdt+∆t (15)

with

vt+∆t/2 =
1

∆t

(
dt+∆t − dt

)
(16)

The following expression follows from equations (6)and (9):

at =
1

∆t2
(
dt+∆t − 2dt + dt−∆t

)
and vt+∆t/2 = vt−∆t/2 + ∆tat (17)

hence the name “central difference” scheme. Note that dt+∆t and vt+∆t/2 are known from
the previous step at time t (equations (17) and (16)) so that the right hand side of (15) is
known.

In order to make this scheme explicit, a diagonalization of M and C is performed (also
called a lump) so that the solution of equation (15) is trivial. Each time step is therefore
solved very quickly through a simple matrix vector product and there is no linear system to
solve. The basic algorithm is described below:

1. initiate d0 and v0

2. compute a0 = M−1
(
F0
ext −Kd0 −Cv0

)
and v1/2 = v0 + ∆t

2 a0

3. enforce velocity boundary conditions

4. increment time from t−∆t to t and compute dt = dt−∆t + ∆tvt−∆t/2

5. compute at = M−1
(
Ft
ext −Kdt −Cvt−∆t/2

)
6. compute vt+∆t/2 = vt−∆t/2 + ∆tat

7. if computation not finished, go to 3

The drawback of explicit algorithms lies in the stability condition that imposes that the
time step ∆t is bounded by a critical time step ∆tcrit. The stability criterion for explicit
central difference method reads (damping has no effect on stability):

ωh∆t ≤ 2 ⇒ ∆tcrit = 2/ωh (18)

Z-set — Non-linear material
& structure analysis suite 3.15

****calcul mechanical explicit

where ωh is the highest natural frequency of the discretized structure. Computing ωh is very
expensive since it requires solving a large eigen values system. It can be shown that ωh is
bounded by the maximum frequency of individual elements:

ωh < ωhel (19)

Let us take the example of a linear beam element with stiffness K and lumped mass matrix
M such that:

K =
ES

h

(
1 −1
−1 1

)
M =

ρhS

2

(
1 0
0 1

)
(20)

where h, S, E and ρ are the element length, section, Young’s modulus and mass density

respectively. The non-zero solution of the eigen value problem K − ωhel
2
M leads to ωhel =

2/h
√
E/ρ = 2c/h where c is the wave speed. The critical time step can therefore be written:

∆tcrit = h/c (21)

This corresponds to the time for the wave to go through the element. This interpretation
can be verified for every kind of finite element. In practice, this last remark is used in Z-set
to evaluate ∆tcrit. The characteristic size of the element is taken as the minimum distance
between two nodes of the element. The wave speed is taken to be the longitudinal wave speed
(the fastest one) which reads :

cL =

√
λ+ 2G

ρ
(22)

where λ and G are the Lamé coefficients. An important property of finite elements applied to
hyperbolic problems is that ∆tcrit is O(h) whereas it is O(h2) for parabolic problems. This
makes explicit methods difficult to apply to parabolic problems such as heat conduction or
diffusion in general. It is important to note that the critical time step is governed by the size
of the smallest element in the mesh. If there is only one spurious small element (due to a bad
meshing for instance), the computational cost would increase.

Explicit algorithms are very interesting in the sense that no linear system need to be
solved. However, a major limitation lies in the O(h) critical time step. Explicit methods are
therefore well suited to model problems where small time steps are imposed by the physics.
If there is no need for small time steps, implicit methods may be economically competitive.

Non linear problems:
Extension to non-linear problems is direct and equation (15) is replaced by:

(M + ∆tC) at+∆t = Ft+∆t
ext − Ft+∆t

int (dt+∆t,vt+∆t/2) (23)

In the algorithm presented above, the computation of Ft+∆t
int (dt+∆t,vt+∆t/2) is performed

between steps 3 and 5.
The stability condition (18) emanates from an analysis of linear equations. At this time,

there is no stability theorem that covers the range of nonlinear phenomena such as contact-
impact. Instability cannot be overlooked in linear problems since the solution tends to grow
exponentially. However, this is not always true for nonlinear equations. A good way to detect

Z-set — Non-linear material
& structure analysis suite 3.16

****calcul mechanical explicit

instabilities is to check the energy balance and make sure that no spurious energy is created.
The default stability criterion used in Z-set is defined as:

|Wkin +Wint +Wdmp −Wext| ≤ εmax (Wkin,Wint,Wext) (24)

where Wkin is the kinematic energy, Wint and Wext are works done by internal and external
forces respectively, and Wdmp is the energy dissipated by damping. An absolute criterion can
also be used :

|Wkin +Wint +Wdmp −Wext| ≤ ε (25)

ε is a small value defined with the **sequence *ratio command. The absolute criterion is
selected by using the absolute option (see below). If the energy balance is not verified, the
sub-step is recomputed with half time step.

Syntax:

The resolution procedure is specified by the usual way using the ***resolution command.
Specific commands are therefore added to control some parameters. Here are the different
options available within the resolution block:

***resolution

**sequence [N]

[*ratio [absolute] val1 [val2 ... valN]]

[*beta val1 [val2 ... valN]]

[*fixed_dt val1 [val2 ... valN]]

[*max_dt val1 [val2 ... valN]]

[*min_dt val1 [val2 ... valN]]

[*damping val1 [val2 ... valN]]

[*max_successive val1 [val2 ... valN]]

[**show_gauge]

sequence has the same syntax as in **calcul (see page 3.190) with additional com-
mands. Note that the time stepping is not defined by the number of increments set in
**sequence but is either automatically computed by Z-set (by default) or explicitly specified
using *fixed_dt. If the time increment is larger than the algorithm time step, sub-stepping
occurs. The number of sub-steps performed within each sequence increment is displayed in
the standard output.

*ratio [absolute] value, defines ε in (24) (or in (25) if the keyword absolute is used).

*beta value. If the critical time step is computed by Z-set, the effective time step is taken
to be ∆tcrit×value. Values between 0.8 (default) and 0.9 are usual.

*fixed dt value, specifies the time step to use. This value is not affected by *beta.

*max dt value, specifies the upper bound of the time step

*min dt value, specifies the lower bound of the time step. If the time step is lower than
value, an error message is sent and the computation is stopped.

*damping value, add constant diagonal components in the damping matrix C. This com-
mand is similar to the command ***explicit **damp (see below).

Z-set — Non-linear material
& structure analysis suite 3.17

****calcul mechanical explicit

*max successive value, specifies that if the energy balance is not verified after value suc-
cessive sub-steps (dividing each successive time step by 2), Z-set will stop and send an
error message. The default value is set to 50 which is a relatively large value.

**show gauge allows to display the sub-stepping evolution within an increment. A percent
value is displayed in the standard output. This can be useful to get an idea on how fast
the computation goes when a lot of sub-steps are performed.

Additional options are also available through the ***explicit command.

***explicit

**damp [constant] value
**every_update value

**damp [constant] value, is similar to *damping. Each **damp command is cumulative.
At the moment, the only damp type is “constant” (default).

**every update value, specifies that the critical time step is computed every value time
steps. The default value is set to 20. Recomputing the critical time step is useful
within a finite strain calculation, where large deformation of some elements can indeed
modify ∆tcrit (i.e. the time for the wave to go through the element can decrease or
increase). However, this can be time consuming, please check CPU time at the end of
the computation.

Example:
An example explicit dynamic calculation follows.

****calcul explicit_mechanical

***mesh plane_strain

***resolution

**sequence

*time 10. 20.

*increment 10 30

*fixed_dt 0.05 0.01

*ratio 1.e-2

*max_successive 10. 20.

*beta 0.9 0.8

**show_gauge

***explicit

**every_update 1

**damp constant 1.e-3

***bc

**impose_nodal_dof

left U2 0.0

left U1 0.0

Z-set — Non-linear material
& structure analysis suite 3.18

****calcul mechanical explicit

**pressure

right 0.00001 echelon

***table

**name echelon

*time 0.0 1.e-10 10000000.

*value 0.0 1.0 1.0

***material

**elset R1

*file dynam_unit

****return

Z-set — Non-linear material
& structure analysis suite 3.19

****calcul eigen

****calcul eigen

Description:
This option of the ****calcul command indicates that eigen value solution of the natural
frequencies are to be calculated. The solution of the eigen-value problem is controlled using
the command ***eigen (see page 3.107).

Eigen mode calculations accept a sub-set of the above commands, with an additional
command ***eigen used to give parameters of the eigen problem solution. The allowable
commands are found in the following table:

CODE DESCRIPTION

***mesh same as above

***eigen give eigen solution parameters and resolution method

***equation same as above

***bc same as above; only fixed conditions are allowed

***material same as above

***output specifies what output to save at the end of an eigen solution;

this is a sub-set of the above

Example:

An example file for Eigen solution follows.

****calcul eigen

***mesh

**elset solid small_deformation

**elset springs spr1

***eigen lanczos

6 0.01 2.

***bc

**impose_nodal_dof

base U1 0.00

base U2 0.00

base U3 0.00

***output

***material

*file building.mat

****return

Z-set — Non-linear material
& structure analysis suite 3.20

****calcul thermal transi

****calcul thermal transient

Description:
This option of the ****calcul command indicates that the problem is transient thermal
analysis.

Example:

****calcul thermal_transient

***resolution

**sequence

*time 10. 8010.0

*increment 10 100

*iteration 50 50

*ratio 0.01 0.01

*algorithm p1p1p1

***bc

**fluconv exte

h 232.5

Te 1000.0 tab1

***init_dof_value

TP uniform 20.

***material

*file ../MAT/TTLL_02_89

***table

**name tab1

*time 0. 50000.

*value 1. 1.

***output

**curve

*precision 4 *small 1.e-4

*node_var 1 TP

*node_var 16 TP

****return

Z-set — Non-linear material
& structure analysis suite 3.21

****calcul diffusion

****calcul diffusion

Description:
This option of the ****calcul command indicates that the problem is a diffusion one, obeying
Ficks law.

CODE DESCRIPTION

***impose kinematic used to allow the geometry to evolve which can be very

useful for coupled analysis

Z-set — Non-linear material
& structure analysis suite 3.22

****calcul weak coupling

****calcul weak coupling

Description:
The weak-coupling implementation uses an iterative approach to an arbitrary coupled prob-
lem. Any number of sub-problems are solved (thus keeping the individual systems small)
with the coupling taking place through appropriate transfer of results between problems. For
example, a mechanical problem can transfer internal heat generation due to mechanical dissi-
pation to a thermal problem which calculates the resulting temperature field evolution which
is re-transferred to the mechanical problem to allow coefficient alteration.

Syntax:
Some special commands are of interest for the coupled problem. These define the sub-problem
files (standard .inp files), and the method of determination for convergence of the coupled
problems.

***resolution define the global time steps to be run; convergence parameters for the
sub-problems are determined in their input files.

***coupled resolution additional convergence parameters specific to the coupled solu-
tion.

***sub problem specify a sub-problem to be added; these will be run in the order they are
entered.

Example:
The following is the top level command file for the test

$Z7PATH/test/Coupled_test/INP/MechTherm.inp

****calcul weak_coupling

***resolution

**sequence

*time 4.0 8.0

*increment 10 10

*ratio 1.e-4

***coupled_resolution

**iteration 2

***sub_problem fem MechTherm/plastic

**transfer integ_nodeparam

*variable q_dot

*file MechTherm/heat_out

**transfer node_kinematic

*file MechTherm/kine_out

***sub_problem fem MechTherm/thermal

**transfer node_nodeparam

*variable TP

*file MechTherm/temp_out

****return

Z-set — Non-linear material
& structure analysis suite 3.23

This section list all three stars commands available under ****calcul, you may find an
exhaustive list of these commands in the index at the end of this handbook page 7.2.

Z-set — Non-linear material
& structure analysis suite 3.24

****calcul

***linear solver

***linear solver

Description:
This keyword specifies the solver used to solve the linear system of equations involved in
the global step of the Newton-Raphson algorithm. Both direct and iterative solvers are
implemented in Z-set.

Syntax:

***linear_solver type

Where type is a solver type, which can take the following values.

frontal is a direct frontal solver based on a Cholesky factorization, so matrices have to
be symmetric, definite and positive. This solver is the default solver.

sparse direct is a direct solver using sparse storage, i.e. only non-zero terms of the
factorized matrix are stored. So it is less memory consuming than the frontal solver.
This solver is based on a Crout factorization, so matrices have to be symmetric, definite,
but not necessary positive.

sparse dscpack is an optimized direct solver using sparse storage. It is based
on a multifrontal algorithm using a Cholesky factorization, so matrices have to
be symmetric definite and positive. To be very efficient, this solver uses the
BLAS optimized mathematical library working on full matrices, so it is locally
more memory consuming than the sparse_direct solver. This solver is devel-
oped by Padma Raghavan of the Pennsylvania State University, and used by per-
mission. Information on the DSCPACK solver is available on Web at the link :
http://www.cse.psu.edu/~raghavan/Dscpack/dscpack.ps

sparse iterative includes all the available iterative solvers. These solvers are less mem-
ory consuming than direct ones, because matrices have never to be assembled, but if
matrices have a bad condition number, it can be very hard to achieve convergence. Two
iterative solvers can be used in Z-set, a Conjugate Gradient algorithm (cg), or a Global
Minimum RESidual one (gmres). The main difference between these two solvers, is the
assurance to achieve convergence if matrices are non-positive using the GMRES algo-
rithm. This solvers type needs some complementary subkeywords described in section
***linear_solver sparse_iterative page 3.27.

Example:
The following table gives memory needed, total CPU time and number of iterations to solve
using different solvers a traction problem for a cube meshed with 13824 linear elements cor-
responding to 46875 dofs.

Z-set — Non-linear material
& structure analysis suite 3.25

****calcul

***linear solver

Total CPU time Memory needed (Mb) Number of iterations

Frontal 48.22 mm 730 Mb

Sparse direct 27.82 mn 489 Mb

Sparse dscpack 3.52 mn 538 Mb

CG + lumped 1.92 mn 146 Mb 238

CG + Cholesky 2.17 mn 160 Mb 94

GMRES + lumped 5.9 mm 161 Mb 750

GMRES + Cholesky 3.12 mm 175 Mb 169

Z-set — Non-linear material
& structure analysis suite 3.26

****calcul

***linear solver

sparse iterative

***linear solver sparse iterative

Description:
This keyword specifies the iterative solver used to solve the linear system of equations involved
in the global step of the Newton-Raphson algorithm.

Syntax:

[**precond type]

[**full_output]

[**solver solver]

Where

**precond specifies the type of pre-conditioning used to accelerate convergence. The two
available types are lumped (e.g. diagonal) and cholesky. Default value is lumped. Using
cholesky preconditioner can significantly reduce the number of iterations even if it needs
to evaluate and factorize an supplementary matrix, unlike lumped preconditioner.

**full output enables to print convergence informations. Default value is FALSE. If FALSE,
nothing is said about solver iterations.

**solver specifies the type of iterative solver used. solver can take these two values cg

(i.e. Conjuguate Gradient) or gmres (i.e. Global Minimum RESidual). Default value is
cg. According to the chosen solver, the following keywords are different.

Syntax:
For the Conjuguate Gradient algorithm, syntax is the following:

[*max_iteration max iter]
[*precision eps]

[*output_every_iter nb iter]
[*output_to_file file]
[*keep_direction dir]
[*max_standing max]
[*min_iter min iter]
[*reprojection]

*max iteration max iter, where max iter is the maximum number of allowed iterations
when solving the problem. Default value is 1000.

*precision eps, where eps is a real value defining the relative precision required for
convergence when solving the problem with the CG method. Default value is 1e-08. For
a system of equation:

Kq = F

this relative ratio is defined by:

ratio =
||F−Kq||
||F||

Z-set — Non-linear material
& structure analysis suite 3.27

****calcul

***linear solver

sparse iterative

and convergence occurs when:

ratio < eps

*output every iter iter, where iter is the frequency of the iteration information output.
This option is only active if the keyword ***full_output is TRUE. Default value is 10.

*output to file file, where file is a character string specifying the file where iteration
information are written. This option is only active if the keyword ***full_output is
TRUE. Default value is iterative solver it.

*keep direction dir, where dir is the the integer value specifying the number of orthogonal
descent directions retained during the CG iterations. Increasing dir leads to faster
convergence but is more memory consuming. Default value is max iter+2.

*max standing max, where max is an integer specifying the maximum number of CG
iterations allowed without any significant decrease of the convergence ratio. Default
value is 50.

*min iter min iter, where min iter is the minimum iterations when solving the problem.
Default value is 1.

*reprojection This subcommand can significantly reduce the number of CG iterations,
when used in conjunction with quasi-Newton schemes of tangent matrix update (such
as eeeeee or p1p1p1, see the **algorithm command). With this option the descent
directions calculated during previous load increments are reused, leading to convergence
in just a few iterations when the tangent matrix and the load increment stay constant
over several Newton increments.

Syntax:
For the Global Minimum RESidual algorithm, syntax is the following :

[*max_iteration max iter]
[*precision eps]

[*output_every_iter nb iter]
[*output_to_file file]
[*krylov_space krylov dim]

Where *max iteration, *precision, *output every iter, *output to file are the
same that for CG solver.

*krylov space krylov dim, where krylov dim is an integer value specifying the dimension
of the krylov space built for each cycle of the GMRES algorithm. Increasing this value
leads to faster convergence.

Example:

***linear_solver sparse_iterative

**full_output

**precond cholesky

Z-set — Non-linear material
& structure analysis suite 3.28

****calcul

***linear solver

sparse iterative

**solver cg

*output_to_file iterations.hist

*precision 1.e-12

*output_every_iter 1

*max_iteration 1000

Z-set — Non-linear material
& structure analysis suite 3.29

****calcul

***linear solver rigid

***linear solver rigid

Description:
This keyword specifies a ”wrapper“ solver which encapsulate a real solver. It behaves exactly
like the underlying solver, except that the kernel of the operator is computed. If requested, a
boundary condition is automatically added to fix rigid body motions.

The way rigid body motions are computed is explained in the theory manual, at the linear
solver chapter.

Syntax:

[**local_solver type]

options for the local solver
[**create_bc]

[**verbose solver]

Where

**verbose asks the wrapper to print detailed informations about rigid body motions found,

**local solver allow to choose the underlying linear solver. Any linear solver may be used,
but note that iterative one sometimes may exhibit weird behavior (especially depending
on the convergence ratio used for these solvers),

**create bc specifies that a boundary condition has to be added to fix all body motions.
Note also that in sequential computations the presence of body motions often means
that there is an error in the input file.

Z-set — Non-linear material
& structure analysis suite 3.30

****calcul

***auto remesh

***auto remesh
Description:

The ***auto_remesh section is derived from ***initialize_with_transfer and allows au-
tomatic remeshing during a computation without stopping it. This is a backbone feature for
crack propagation or computations using adaptive mesh.

Basically the auto_remesh bloc of commands is divided into:

• mesher commands controlling the remesh process.

• timing commands that trigger the automatic remeshing.

• transfer commands that specify how to transfer data between original and modified
meshes.

Note:

• The use of the Z8 output database is mandatory.

• auto_remesh transfer only variables that have been saved to the output database. To
transfer all variables, one should use **save_all command in ***output command
bloc

• The graphical interface scripts Zcrack and Zxfem may be used to handle crack prop-
agation problems and automatically generate input data for this command.

Syntax:
***auto_remesh takes a number of ***initialize_with_transfer controls, and some ad-
ditional specific commands.

***auto_remesh

[**output_after_remesh]

[**no_deform_mesh]

[**each_incr]

[**frequency]

* ...

[**remeshing_criterion criterion]

**mesher commands
...

% below options are inherited from initialize_with_transfer, see 3.130%
[**quiet]

[**reequilibrium

*algo algorithm
*ratio convergence
*iter max iterations]

[**skip_nodal_transfer]

[**skip_integ_transfer]

[**nodal_var_transfer

[*mapping mapping method]]

[**integ_var_transfer

[*integ_transfer transfer method]]

Z-set — Non-linear material
& structure analysis suite 3.31

****calcul

***auto remesh

**output after remesh save the results of the transfer to the database. With this option,
Z8 database will contain two copies of the same results: the original data on the original
mesh, and the transferred data on the new mesh obtained as a result of the specified
mesher commands.

**no deform mesh use initial configuration of the old mesh to locate the nodes/IP of current
mesh (if not specified, the default behavior is to use deformed mesh)

**each incr force remeshing on each increment of current computation.

**frequency used to trigger the remeshing process, for more sub options see 3.148

**remeshing criterion a more general remeshing trigger, The possible criterion are sum-
marized

CODE DESCRIPTION

at time

quadratic curving criterion

element shape quality

for crack propagation

error based

**mesher commands mesh manipulators commands see 2.4 for usable commands

Example:

***auto_remesh

%% AUTO_REMESH options

**output_after_remesh

**no_deform_mesh

**frequency

*at_time 0.02

%% INITIALIZE_WITH_TRANSFER options

**integ_var_transfer default

*locator bb_tree

*integ_transfer nearest_gp_corrected

%% TRANSFORMERS

**yams_ghs3d

*no_deform_mesh

*min_size 0.2

*absolu

**nset enc

*use_bset enc

Z-set — Non-linear material
& structure analysis suite 3.32

****calcul

***auto remesh

This example can be found in Crack test/INP/cube 2cracks.inp

***global_parameter

Solver.OutputFormat Z8

Zmaster.OutputFormat Z8

***auto_remesh

**frequency

*d_cycle 1

*cycle_period 2.0

*at 2.0

**no_deform_mesh

**skip_integ_transfer

**skip_nodal_transfer

**save TO_REMESH.geo

**drive_crack

*mesher cube_2cracks.inp

*geo_in TO_REMESH.geo

*geo_out REMESHED.geo

*advance cube_2cracks.adv

*separate

**open REMESHED.geo

***output

**save_parameter

**save_all

Z-set — Non-linear material
& structure analysis suite 3.33

****calcul

***bc

***bc
Description:

This procedure and its options define the boundary conditions of a problem. The definition of
boundary conditions groups both conditions acting on the degrees of liberty and those acting
on the associated forces.

Syntax:

***bc [from t1 to t2]

**bc-type
bc-specific options

**another-bc-type
...

There may be any number of sub-options defining the different conditions to impose, and
also any number of ***bc instances.

The different types of boundary conditions are selected by using different values for bc-
type. These different BC commands are the subject of the following pages. The pages of
the sub commands are sorted according to their applicability to specific problem types. The
following tables are included as a quick-directory to the BCs.

If the optional arguments from t1 to t2 are specified, all the bounday conditions de-
clared in the current ***bc block will be active only between times t1 and t2. You may
declare several ***bc to partition the activity intervals of your boundary conditions.

General purpose BCs:
Some BCs are general-purpose, being specified in terms of any degree of freedom in the
problem, and their attached location (nodal or elemental).

Z-set — Non-linear material
& structure analysis suite 3.34

****calcul

***bc

CODE DESCRIPTION

impose nodal dof used to directly impose any DOF value which

is located at a node - p.3.45

impose nodal dof rate used to impose any DOF value in a rate form -

p.3.47

impose nodal reaction sets a node’s associated force - p.3.47

impose nodal reaction rate rate of the nodes reaction - p.3.50

impose element dof Fix DOFs which exist at element Gauss points

- p.3.41

impose element dof reaction Set DOF reactions which exist at element Gauss

points - p.3.42

impose elset dof for DOFs defined over an element set - p.3.43

impose elset dof reaction reactions associated to DOFs defined over an

element set - p.3.44

impose nodal dof density Density of a nodal dual force over element faces

or edges - p.3.51

impose nodal energy Fix DOF until a specified energy is reached

impose nodal dof and release

release nodal dof Time based release of fixed DOFs (can be used

for crack growth) - p.3.52

submodel used to directly impose any DOF value at sub-

model boundary nodes from a master compu-

tation - p.3.53

Z-set — Non-linear material
& structure analysis suite 3.35

****calcul

***bc

Mechanical BCs:
There are many mechanical specific boundary conditions in Zebulon. A summary follows.

CODE DESCRIPTION

deformation used to impose displacements with an

intermediate (strain) tensor

deformation cosserat imposes a “Cosserat” type strain

strain gradient displacements as u = Er + 1/2D r × r

crack release propagate crack (releasing nodes) according to

a material variable criterion

radial submit all or part of a structure to a radial

expansion

radius enforces “rolling” part of a structure on a radius

(for example holding the radius of a joint)

pressure impose a surface pressure on a liset or a faset

shear impose a shear pressure on a liset (only valid in

2D)

impedance impose an impedance boundary condition (only

valid in dynamics).

hydro impose a surface pressure on the deformed ge-

ometry; this simulates a fluid pressure

curvature Curvature on a boundary ui = εijkKjlXlXk

centrifugal centrifugal loading for all the elements of a

structure due to a rotational frequency

gravity applies a uniform acceleration force to the en-

tire structure

rotation rotate nodes about a given axis

free rotation Rotation about an axis with one direction free.

linear rotation Rotation with small angle (θ ≈ sin θ)

linear free rotation Free rotation with linear approx.

K field Impose the linear elastic crack tip solution to a

node set

static torsor Impose a static torsor (resultant and momen-

tum) on a nset. It is associated to a rigid body

motion of the nset.

Z-set — Non-linear material
& structure analysis suite 3.36

****calcul

***bc

Thermal BCs:
Thermal boundary conditions are provided for a variety of heat flux transfer options. Surface
to surface radiation transfer is not yet possible.

CODE DESCRIPTION

surface heat flux applies a constant heat flux on a liset or a faset

- p.3.78

convection heat flux convective flux on a liset or a faset - p.3.79

interface heat imposes an inter-facial thermal resistance be-

tween two lisets or fasets - p.3.80

volumetric heat applies a volumetric heat flux on all the ele-

ments of a structure - p.3.81

volumetric heat from parameter applies a volumetric heat flux on all the ele-

ments of a structure. The values come from a

parameter field - p.3.82

volumetric heat in file Import an internal heat generation from a me-

chanical problem (coupled) - p.3.83

radiation heat flux by radiation on a liset or faset - p.3.84

Some of these keywords replace deprecated keywords as follows :
flucons by surface_heat_flux

fluconv by convection_heat_flux

fluconv_interface by interface_heat

fluvol by volumetric_heat

fluvol_in_file by volumetric_heat_in_file

Z-set — Non-linear material
& structure analysis suite 3.37

****calcul

***bc

Mass Diffusion BCs:

CODE DESCRIPTION

surface flux Impose surface flux of concentration

Z-set — Non-linear material
& structure analysis suite 3.38

****calcul

***bc

Scaling of boundary values:
The magnitude of boundary conditions are normally specified in two parts. The first is a

“base value” real number, function or file data (see below) which acts as a multiplicative scale
factor. In the event that this value is zero, the BC will be a fixed condition, not requiring a
loading table. The second part is a table name which refers to a corresponding defined table
(using the ***table command). The table is used to describe the magnitudes in time.

Table specifications may usually take more than one table name. This is very useful in the
case of cyclic loadings, or other complex lengthy waveforms. The tables will be sequentially
searched for valid times. That is if the first table is defined from 0. to 250., and a second from
200. to 1000., times until 250. will be calculated with the first table, while the remaining
time is taken from the second table. If the time exceeds 1000. there will be an error.

Base value:
As mentioned earlier, the “base value” acts as a multiplicative scale factor for the following
table. The standard base value is simply a real number. It may also be a more elaborated
object, such as a function or file, which allows space-dependent boundary conditions.

The following example presents all four types of base values currently available:

***bc

**impose_nodal_dof

left U1 0. % real value

right U1 file right.dat table1 % binary file

bottom U2 ascii_file bottom.dat table2 % ascii file

**pressure

top function sin(x); time % function

Note that some multi-point-constraints (see 3.110) also use this concept of base value.

Duration of application:
Normal use will involve defining the value of a boundary condition throughout the time scale
of the problem. It is very important to include the value of the BC at zero time.

Boundary conditions can also be applied over a limited time during the problem, with
the condition either “expiring” or coming into action after a specified period of time. This
is very useful for dynamic problems where an initial movement is given and then released,
or if a condition is applied to a certain point, and then continued with a different type
condition. An example of the later is to apply force control for a first sequence, followed
by a rate of displacement. Note after the load is applied the absolute value of displacement
is unknown (for non-linear problems) so a displacement rate must be imposed (e.g. with
impose_nodal_dof_rate).

These cases are handled by having the BC’s table defined over a limited duration of the
problem time scale, and including the keyword exp to indicate that the expiration or activation
of the BC was intentional.

***resolution

**sequence

*dtime 1.0 0.95

***bc

**impose_nodal_dof

wall U2 0.0

Z-set — Non-linear material
& structure analysis suite 3.39

****calcul

***bc

wall U1 0.0

load exp U2 -1.0 tab

***table

**name tab

*time 0.0 1.

*value 0.0 1.

Association to geometry:
Most BCs may also be localized to certain portions of the geometry, through the use of
node, element, line and face sets. Specification of these entities are discussed in the meshing
chapters file .inp: 2D meshing and file .inp: 3D meshing. The following general statements
can be made:

• Boundary conditions to be applied in order to directly impose the value of nodal degrees
of freedom are applied to nsets.

• Boundary conditions which are distributed over a surface, or have a mean value for a
surface (e.g. pressure) will be applied to an liset in 2D or a faset in 3D.

• Conditions distributed through the body will be applied to an elset.

Line or face set surface conditions can be difficult to get right the first time because the
sense of the set must be well defined.

When it is desired to impose a condition to a single node or to a single element, the node
or element number may always be substituted for an nset or elset.

There are also pre-existing nsets and elsets for every node or element in the mesh. These
sets are named respectively ALL_NODE and ALL_ELEMENT.

Z-set — Non-linear material
& structure analysis suite 3.40

****calcul

***bc

**impose element dof

**impose element dof

Description:

This command is used to impose degrees of freedom which exist at element integration
points. These DOFs are commonly part of mixed formulations, such as pressure-displacement,
and plane-stress elements.

Syntax:

**impose_element_dof

elset dof value table

Example:
Making a 2.5 D case of planar displacements and an imposed ε33 strain. formulation.

***mesh plane_stress

***bc

**impose_nodal_dof

bottom U2 0.

top U2 1. time

left U1 0.

**impose_element_dof 1 EZ 1.e-3 time

Element DOFs are also imposed for the RVE elements, with a full strain tensor being the
element DOFs.

***bc

**impose_element_dof

ALL_ELEMENT E12 1. time

Z-set — Non-linear material
& structure analysis suite 3.41

****calcul

***bc

**impose element dof reaction

**impose element dof reaction

Description:
This command imposes the conjugate reaction to an element degree of freedom.

Syntax:
The syntax takes an element set name, the name of the degree of freedom for which reaction
will be fixed, a scale value, and a table name (required for non-zero value).

**impose_element_dof_reaction

elset dof value table

Example:

The following example apples mixed mode loading to an RVE element with the
impose element dof reaction conditions directly imposing the stress. This demonstrates
the use of an element number for the element set. Note that E22 is given to fix σ22. This is
because the reaction is specified by the degree of freedom name, which is the strain in RVE
elements.

***bc

**impose_element_dof

1 E33 0.0

**impose_element_dof_reaction

1 E22 25. time

1 E11 400. time

Z-set — Non-linear material
& structure analysis suite 3.42

****calcul

***bc

**impose elset dof

**impose elset dof

Description:
The boundary condition allows one to impose the value of a degree of freedom over an element
set. Principally this condition applies to the elements 2 5D (see ***mesh). The DOFs imposed
by this condition must be located at element integration points (Gauss points), and not nodal
unknowns.

Syntax:

**impose_elset_dof

name elset dof name value name table

name elset character name of the element set. This must be the name of a valid elset

defined in the geometry file. The DOF will be imposed at every Gauss point in this
element set.

dof name The character name of the degree of freedom to be imposed. For the 2 5D elements
the choices are t1 t2 t3 w1 w2 w3.

value base value which scales table values (real).

table character name or list of names for the tables to be used (see ***table).

Example:

**impose_elset_dof

str t1 .01 tab1

str t2 0.

str t3 0.

str w1 0.

str w2 0.

str w3 0.

Z-set — Non-linear material
& structure analysis suite 3.43

****calcul

***bc

**impose elset dof react

**impose elset dof reaction

Description:
This command allows application of a force on the group of nodes within an element set. Note
that application of a force is not the same as application of a pressure.

Syntax:

**impose_elset_dof_reaction

name elset dir value name table

name elset character name of the element set within which the reaction will be applied.

dir real value for the direction of application for the force.

value base value (real) for the condition. This value is a multiplier of the current table
value thereby establishing the magnitude of the condition.

table character name for a valid loading table input with the command ***table.

Example:

**impose_elset_dof_reaction

ALL_ELEMENT w1 1. tabmx

ALL_ELEMENT w2 1. tabmy

Z-set — Non-linear material
& structure analysis suite 3.44

****calcul

***bc

**impose nodal dof

**impose nodal dof

Description:
This boundary condition imposes degrees of freedom located at nodes to defined values in
time. The condition is general and therefore applies to all types of DOF for all types of
problem.

Syntax:
The syntax required to impose nodal DOFs is:

**impose_nodal_dof

nset name dof name value table name

nset name This is the name of a valid node set (nset) which gives all the nodes where the
DOF is to be imposed.

dof name The character name of the DOF to be imposed. This must be one of the defined
DOF types given by the problem, and as indexed in the appendix. DOF names are also
listed in the problem.ut reference file.

value This real value acts as a multiplier on the current applied load table value. If the
value is zero, no table will be required.

table name A character name for the loading table which describes the DOF value in time.
A corresponding table must therefore be given elsewhere (see the procedure ***table).

Example:
Supposing that a mesh has been created with a node set composed of a single node, node 1.
This example displaces that node a fixed amount in the directions u1 and u2. The u1 magni-
tude will be 1.2 times the table value specified by table3 while u2 will be only 0.2 times that
value. Using the same table assures synchronization between the loadings.

***bc

**impose_nodal_dof node1 U1 1.2 table3

**impose_nodal_dof node1 U2 0.2 table3

Note that a structure will normally have more displacement conditions than the fixing of a
single node. Other conditions such as pressure and force are also likely.

The same command may be used to specify the temperature in a thermal problem.

**impose_nodal_dof node1 TP 200.0 tab1

Note:
Some variants exist, which allow the value to vary in space:

**impose_nodal_dof

nset name dof name function function(x,y,z); table name

nset name dof name file binary file table name

nset name dof name ascii_file ascii file table name

Z-set — Non-linear material
& structure analysis suite 3.45

****calcul

***bc

**impose nodal dof

The function variant allows the DOF value to depend on nodal coordinates. The function
may also depend on time; this is however discouraged, because in that case incremental values
are not properly computed. The time dependency should rather be specified through the table.

Both file variants read the value of each DOF from a file; thus the file should contain as
many entries as nodes in the nset, values being ordered as in the nset. Note that the binary
form expects entries as “floats” (not “doubles”).

Z-set — Non-linear material
& structure analysis suite 3.46

****calcul

***bc

**impose nodal dof rate

**impose nodal dof rate

Description:
This boundary condition imposes degrees of freedom located at nodes on a rate basis. The
loading table will be scaled by the base value at any time to give the loading rate.

Syntax:
The syntax required to impose nodal DOF rates is:

**impose_nodal_dof_rate

nset name dof name value table name

nset name This is the name of a valid node set (nset) which gives all the nodes where the
DOF is to be imposed.

dof name The character name of the DOF to be imposed. This must be one of the defined
DOF types given by the problem, and as indexed in the appendix. DOF names are also
listed in the problem.ut reference file.

value This real value acts as a multiplier on the current applied load table value. If the
value is zero, no table will be required.

table name A character name for the loading table which describes the DOF value in time.
A corresponding table must therefore be given elsewhere (see the procedure ***table).

Example:
This example is for an axisymmetric specimen with applied hydrostatic pressure of 52 MPa,
followed by strain rate controlled compression cycling along one axis, while the hydrostatic
pressure is maintained. Note the use of zero in *dtime to apply step loading of the strain
rate. Expiring (exp) is also applied to the DOF rate condition because the DOF is not active
at all times.

***bc

**pressure

press -1. ptab

top exp -1. ptab2

**impose_nodal_dof

y=0 U2 0.0

x=0 U1 0.0

**impose_nodal_dof_rate

y=1 exp U2 1.0 seg

***table

**name ptab

*time 0.0 100. 5000.

*value 0.0 52.0 52.0

**name ptab2

*time 0.0 100.

*value 0.0 52.0

**name seg

Z-set — Non-linear material
& structure analysis suite 3.47

****calcul

***bc

**impose nodal dof rate

*dtime 100.0

0.0 3.1579e+01

0.0 7.8947e+01

0.0 5.5263e+01

*value 0.0

-3.8e-05 -3.8e-05

3.8e-05 3.8e-05

-3.8e-05 -3.8e-05

Z-set — Non-linear material
& structure analysis suite 3.48

****calcul

***bc

**impose nodal reaction

**impose nodal reaction

Description:
This option sets the “force” reactions which act on a node set. Note that applying a force
to a node set is very different than applying a pressure (using the BC **pressure). The
condition is general so it may be used for all types of problem. For the simple mechanical
case, the nodal reactions are in units of force.

Syntax:

**impose_nodal_reaction nset dir val table

nset Character name of the node set where the condition is applied.

dir Direction in which the reaction is applied. This will be the DOF name whose associated
reaction is affected. See the appendix for DOF names.

val Real number for the multiplicative base value of the condition.

table Character table name of a valid table, or a list of character table names.

Example:
The current example demonstrates the incorrect use of this option to impose a surface pressure.
The difference is a common misconception of boundary conditions in the FEM. The problem
uses a plane-stress eight node square element with fixed U1 on the left border and fixed U2 on
the bottom. Material behavior is linear elastic.

The top node set is defined using the right top, middle top, and left top nodes in sequence.
As the square has unit sides, one could suppose that the three forces applied should be 1/3
the stress. The BC is therefore applied as:

***bc

**impose_nodal_reaction

top U2 0.3333 tab

**pressure

press 1. tab

which results in the following distorted deformation:

Proper application of a pressure requires knowledge of the surface integration along the
boundary. The options **pressure and **shear must therefore be used.

Z-set — Non-linear material
& structure analysis suite 3.49

****calcul

***bc

**impose nodal reaction rate

**impose nodal reaction rate

Description:
This is an associated reaction version of **impose_nodal_dof_rate. The condition is useful
when the initial reaction state is unknown, which can be generated with a mix of displacement
and reaction BCs using the exp keyword.

Syntax:
The syntax is analogous to **impose_nodal_dof_rate.

**impose_nodal_reaction_rate

nset name dof name value table name

Z-set — Non-linear material
& structure analysis suite 3.50

****calcul

***bc

**impose nodal dof density

**impose nodal dof density

Description:
The command imposes the flux (associated reaction) density across a surface (nset or faset).
It is a general boundary condition, which can mean imposed pressure in the X-Y-Z directions
for mechanical problems. The condition **fluconv is a special case of this condition as well.

Note that the **pressure command adjusts itself for updated elements according to the
surface normal, and for 3D meshes there is no **shear option because the face tangent is
not fixed. This option differs because it is related to the density of the DOF reactions and
therefore rests in their coordinate space.

Syntax:

**impose_nodal_dof_density

bset dof value table

where bset is a boundary set name (liset or faset), dof is a degree of freedom name (e.g.
U1), value is a scaling value (decimal point number), and table is the name of a loading table
input elsewhere.

Example:
Pressure defined in the U1-U2 directions.

***bc

**impose_nodal_dof

left U1 0.0

bottom U2 0.0

fix U3 0.0

**impose_nodal_dof_density

face.2 U1 0.25 tab1

face.2 U2 0.25 tab2

Z-set — Non-linear material
& structure analysis suite 3.51

****calcul

***bc

**release nodal dof

**release nodal dof

Description:
This command allows a time-based progressive release of a fixed condition. The crack length
is given by the loading table of the condition. Using a function or table of values one can
specify complex crack growth rates. For example crack growth measurements can be input
as a table, and the crack propagated as actually seen. Then loading parameters such as ∆K
or maximum crack tip opening can be correlated to the growth.

Syntax:

**release_nodal_dof

nset dof base-val table

Note:
The crack length is measured as the distance sum of distances between nodes with the initial
tip being at the first node of the given node set (i.e. its the arc length s of the line drawn
by the node set). Curved crack paths are therefore possible. The node set should be ordered
beforehand.

Z-set — Non-linear material
& structure analysis suite 3.52

****calcul

***bc

**submodel

**submodel

Description:
Assume that the current computation is running on a part of a bigger problem already solved.
we call submodel the current part and Master the bigger problem. This boundary condition
imposes degrees of freedom located at boundary nodes in a submodel to values computed
from the Master. The submodel boundary nodes have not to match with Master’s one, this
Bc is able to locate them in the Master mesh and interpolate their values from Master’s dofs.
The condition is general and therefore applies to all types of DOF for all types of problem.

Syntax:
The syntax of submodel is:

**submodel

[*format format]
*global_problem Master name
*dofs dof 1 name dof 2 name ... dof n name
*driven_nsets nset name

format This is the results format of the Master computation. If *format is omitted, the
default Z7 format is assumed.

Master name The name of the Master computation.

dof i name The name of the DOF to be imposed. This must be one of the defined DOF
types given by the Master and submodel problems. DOF names are also listed in the
problem.ut reference file.

nset name This is the name of a valid node set (nset) which gives all the submodel nodes
where the DOFs are to be imposed.

Example:
This example can be seen in test database, we use the displacement U1, U2 on a simple square
to drive a submodel with a hole.

Z-set — Non-linear material
& structure analysis suite 3.53

****calcul

***bc

**submodel

***bc

**submodel

*format Z7

*global_problem master

*dofs U1 U2

*driven_nsets external

Z-set — Non-linear material
& structure analysis suite 3.54

****calcul

***bc

**K field

**K field

Description:
This boundary condition is used to impose on a NSET the displacement field given by the linear
solution at a crack tip. The crack is loaded under mode I or II. This boundary condition is
limited to 2D plane problems. It will work on axisymmetric problems , however its physical
meaning will be uncertain.

The dispalcement field is given by:

Mode I:

u1 =
KI

2µ

√
r

2π
cos

θ

2

(
κ− 1 + 2 sin2 θ

2

)
u2 =

KI

2µ

√
r

2π
sin

θ

2

(
κ+ 1− 2 cos2 θ

2

)

Mode II:

u1 =
KII

2µ

√
r

2π
sin

θ

2

(
κ+ 1 + 2 cos2 θ

2

)
u2 = −KII

2µ

√
r

2π
cos

θ

2

(
κ− 1− 2 sin2 θ

2

)

with

κ =
3− 4ν plane strain

(3− ν)/(1− ν) plane stress

where ν is the Poisson’s ratio. Let M be the point where the displacement field is computed
and T the crack tip. r = || ~MT ||, θ = (~Ox1, ~MT).

Syntax:
The syntax is as follows:

**K_field nset center young poisson plane_state mode value [table]
nset name of the NSET

center crack tip position (2D vector)
young Young modulus (double)
poisson Poisson coefficient (double)
plane_state plane_stress or plane_strain
mode specifies loading mode: I or II
value basic boundary condition value (double). This represents the basic value of KI,II/2µ.
table table name

Example:

Z-set — Non-linear material
& structure analysis suite 3.55

****calcul

***bc

**K field

**K_field

border % nset name

(0.,0.) % crack tip position

0.3 % Poisson’s ratio

plane_stress

II % mode II

10. % basic value

Ktab % table name

Z-set — Non-linear material
& structure analysis suite 3.56

****calcul

***bc

**T field

**T field

Description:
This boundary condition is used to impose on a NSET the displacement field given by the
linear solution at a crack tip of and applied T–field.

Under plane strain conditions, the displacement field is given by:

u1 = T
1− ν2

E
R cos θ

u2 = −T ν(1− ν)

E
R sin θ

where ν is the Poisson’s ratio, E the Young modulus.

Syntax:
The syntax is as follows:

**T_field nset center young poisson value [table]
nset name of the NSET

center crack tip position (2D vector)
poisson Poisson coefficient (double)
young Young module (double)
value basic boundary condition value (double). This represents the basic value of T .
table table name

Example:

Z-set — Non-linear material
& structure analysis suite 3.57

****calcul

***bc

**centrifugal

**centrifugal

Description:
The centrifugal boundary condition is used to apply body forces ρω2r to a defined set of
elements (elset) due to rotational acceleration, with ρ the volumetric mass, ω the rotational
rate and r the distance to the rotational axis.

Syntax:

**centrifugal [updated] [square]

elset name (v) dir value table . . . [tableN]

elset name Character name for the set of elements which are subjected to the centrifugal
loading.

updated Uses the current configuration rather than the initial configuration for determining
the distance r to the rotational axis as well as the direction of the centrifugal force.

square Applies a force proportional to the rotational rate ω instead of ω2.

v Vector giving a point position through which the rotational axis passes. Axisymmetric
problems require that the origin is input as (0.0 0.0).

dir Direction of the rotational axis (d1, d2, or d3). Axisymmetric 2D problems are required
to use the d2 axis direction. Planar 2D geometries require that the axis is d3.

value Base value (real) which scales a table value to determine the applied rotational rate
ω.

table Character name for a valid loading table or tables which, after multiplication with
value, will describe the time evolution of the rotational rate.

To apply a centrifugal force, it is required to give the volumetric mass ρ for the material in
the material file. This is specified with the ***coefficient command.

Units required depend of course on the consistency of units within the problem. For exam-
ple, if the dimensional unit is millimeter, the forces are given in Newtons, and the rotational
rate ω is in radians per second, the volumetric mass must be in tons (metric)/mm/mm/mm.

Example:

**centrifugal

str (0.0 0.0) d2 1.e7 tab1

Z-set — Non-linear material
& structure analysis suite 3.58

****calcul

***bc

**crack release

**crack release

Description:
This BC is used to propagate a crack (release DOFs) according to node-extrapolated material
values (note there can be some significant error due to the extrapolation error, especially with
the high variable gradients found around crack tips).

Syntax:

**crack_release

nset dof var-value-list

where nset is the node set defining the ligament through which the crack propagates,
and dof is the fixed DOF name (e.g. U2). Following these entries, a list of variable-value
combinations are to be entered to specify the crack growth criterion.

Example:
For a plasticity problem a maximum allowable plastic strain equivalent of 20% could be used
(remember the name of p - here epcum depends on the material law used).

**crack_release

middle U2 epcum 0.20

Or one could use a secondary material variable such as the von Mises stress as a ultimate
tensile strength.

**crack_release

ligament U2 sig::mises 520.0

ligament U1 sig::mises 520.0

Z-set — Non-linear material
& structure analysis suite 3.59

****calcul

***bc

**deformation

**deformation

Description:
This boundary condition imposes the displacement vector ~v of a node by the following formula:

~u = ε~r

where ε is a symmetric tensor, and ~r the position vector of the node considered. The origin
of ~r may be a fixed point or a node of the mesh.

For the case where the origin is a fixed point the node set considered must be given, as
well as the position of the origin point in the form of a vector, and the components of the
tensor ε. In 1D ε11 et ε22 may be imposed; in 2D ε12 may be added; in 3D the remaining ε33,
ε13, and ε23 terms may be added. The tensor components are respectively named E11, E22,
E12, E33, E13, and E23. If a component is not defined its value is set to zero. The values may
be set by using a table for all of the components, or a table for each individual component
(only for non-zero components).

Syntax:

**deformation [node]

nset name (vec num node)
compos name value [table]. . . compos name value

[table]

node is an optional keyword indicating that the origin of ~r is a node of the mesh.

nset name Character name of the nset group upon which the displacement will be imposed.

vec Position of the origin point in the form of a vector. This is in the case where the center
is not a node of the mesh. Recall the vector form is 2 or three real values enclosed in
parenthesis such as (1. 0. 0.).

num node Integer number of a node in the case where the node keyword was given.

compos name value Character string giving the name of a component of the ε tensor as
defined above, followed by a real giving the components value. Any number of these
components may be given in any order thereby specifying the deformation tensor.

table character name of the table(s) used to describe the field amplitude. See the command
***table.

Example:
This example shows a simple uniform deformation field to an initially square multi-element
mesh. The required BC input data is the following (see test deform in Z7test/Static test/):

**deformation

boundary (0. 0.) E22 0.1 E11 0.1 E12 .3 tab

Z-set — Non-linear material
& structure analysis suite 3.60

****calcul

***bc

**deformation

where tab is a unit table definition given after. The resulting deformed structure is displayed
below. This type of condition is useful for testing the mechanical behavior of materials under
complex strain loadings.

Another imposed strain field is given below:

**deformation node

nsetdef 2 E11 2. E33 4. tab

Z-set — Non-linear material
& structure analysis suite 3.61

****calcul

***bc

**free rotation

**free rotation

Description:
This rotation condition allows a boundary to be rotated about one of the coordinate axes (2
displacements are imposed), while the DOFs along the third axis remains free. The usefulness
of this condition is obviously only for 3D problems.

Syntax:
The syntax is the following:

**free_rotation

nset dir [origin] value table

nset Name of the node set upon which the condition is active.

dir an axis about which the node set will rotate (d1 d2 or d3). The DOF acting along the
given direction is free in the absence of other conditions acting on it.

origin specifies an arbitrary point on the rotation axis (use vector notation, see 1.3); it
defaults to (0. 0. 0.).

value Base value (scaling factor, decimal number).

table Name of a valid loading table.

Z-set — Non-linear material
& structure analysis suite 3.62

****calcul

***bc

**linear free rotation

**linear free rotation

Description:
A linearized version of the **free_rotation condition for use in linear small deformation
analysis. See page 3.67 for more discussion on this.

Z-set — Non-linear material
& structure analysis suite 3.63

****calcul

***bc

**gravity

**gravity

Description:
The gravity condition applies a body force due to uniform acceleration such as gravity.

To apply a gravitational force, it is required to give the volumetric mass for the material
in the material file. This is specified with the ***coefficient command.

Syntax:
The gravitational BC is specified with the following syntax:

**gravity elset name dir value [table]

elset name Character name for the pre-defined element set where the gravitational accel-
eration is applied.

dir Direction of the gravitational force (d1, d2 or d3). Axisymmetric 2D problems require
that the direction be d2. Plane 2D geometries require that the direction is d1 or d2.

value Real base value scaling the current table magnitude to determine the acceleration
magnitude.

table Character name for a valid loading table or tables which will describe the acceleration
in time.

Units required depend of course on the consistency of units within the problem. For exam-
ple, if the dimensional unit is millimeter, the forces are given in Newtons, and the gravitational
acceleration is in mm/sec/sec, the volumetric mass must be in tons (metric)/mm/mm/mm.

Example:

**gravity

str d2 -20.0 tab1

Z-set — Non-linear material
& structure analysis suite 3.64

****calcul

***bc

**hydro

**hydro

Description:
This boundary condition is used to impose a surface pressure calculated based on the updated
(deformed) geometry, i.e. based on the geometry at the end of each increment (compare this to
***bc **pressure at page 3.68). Hydro pressure will be defined according to the geometrical
normal of a line set in 2D or a face set in 3D.

The sense of the normal with respect to the plane will of course be determined by the
order of the node definitions in the surface definitions. For 2D problems if one walked along
the nodes in the order of the liset command definition, the normal will be oriented to the
right hand side. By convention, the normal is oriented outwardly from a closed body. In 3D
geometries, this convention will be assured by using the standard Z-set meshing utilities.

The sign convention for the pressure is in the sense of mechanics and not hydrolics. That is
to say that the pressure sign will be positive for pressure in the direction of a surface normal.
A cube submerged in fluid will therefore have negative pressure. Note that if the normal
is defined in a non-standard sense which is toward the interior of the body the sign of the
pressure will be reversed.

Syntax:

**hydro bset value [table]

bset This is the character name of a boundary set, i.e. a liset for 2D problems or a facet in
3D problems.

value Real value for the base or scaling value of the hydrostatic pressure. The table value
is scaled by this factor to calculate the pressure at a given time.

table Character name for a valid loading table or tables which will describe the pressure in
time.

Example:

**hydro face1 -100.0 tab1

Z-set — Non-linear material
& structure analysis suite 3.65

****calcul

***bc

**impedance

**impedance

Description:

The impedance boundary condition can be useful, for example, for modeling the presence
behind an interface of a material having different wave propagation properties. It can be
used to tune the part of reflexion and transmission of an incident wave on an interface. The
characteristic impedance Z of a medium is a material property defined as :

Z = ρc

where ρ is the density of the medium and c is the longitudinal wave speed.
The impedance bc is a Robin condition that links the stress on the boundary with the

velocity :
σ~n = Z (~v.~n)~n on Γi

Where ~n is the unitary outward normal vector to the boundary Γi. σ and ~v are the stress
tensor and the velocity respectively. Numerically, impedance is handled through additional
terms in the damping matrix (see calcul dynamic page 3.10).

A classical situation where an impedance bc is needed is the hopkinson experiment. An
input bar impacts a sample from a side, a wave is generated and propagates though the sample
in contact with an output bar on the other side. To simulate the sample/output bar interface
without meshing the output bar, an impedance bc can be used with Z equal to the output
bar characteristic impedance.

Here are two special cases to illustrate the role of the impedance in the reflex-
ion/transmission behavior of a wave at the interface between two media. Lets take two media
having impedances Z1 and Z2 respectively and lets consider a wave coming from material 1:

• if Z2/Z1 = 0 (medium 2 is void for instance), the wave is totally reflected

• if Z2/Z1 = 1, the wave is totally transmitted to medium 2

Syntax:

**impedance bset value

Where bset is the name of the bset where the impedance bc is applied and value is the
impedance factor.

Example:

***bc

**impedance

interface 40.e6

Z-set — Non-linear material
& structure analysis suite 3.66

****calcul

***bc

**linear rotation

**linear rotation

Description:
This condition is a linearized version of the **rotation boundary condition (page 3.72). For
small deformation problems (not updated), this condition should be used.

This version uses the approximation that angles will be small, so sin θ ≈ θ. Large rotations
will of course result in an expansion of the boundary.

Syntax:
The syntax is the same as for **rotation. For 2D problems we have:

**linear_rotation [node]

nset name ((origin) num node)
angle [table]

For 3D problems, the syntax is slightly changed:

**linear_rotation [node]

nset name [num node] (axe)
[(origin)] angle [table]

See the discussion on page 3.72 for more detail on the input structure.

Z-set — Non-linear material
& structure analysis suite 3.67

****calcul

***bc

**pressure

**pressure

Description:
The pressure mechanical boundary condition is used to impose a surface pressure normal to
a valid surface defined by the liset or faset geometry commands. The sense of the normal
with respect to the plane will of course be determined by the order of the node definitions
in the surface definitions. For 2D problems if one walked along the nodes in the order of the
liset command definition, the normal will be oriented to the right hand side. By convention,
the normal is oriented outwardly from a closed body. In 3D geometries, this convention will
be assured by using the standard Z-set meshing utilities.

Pressure calculation is always calculated based on the initial geometry for small deforma-
tion/small displacement formulations, and on the updated (deformed) geometry at the start
of the increment for small deformation/large displacement formulations In large deformation
problems therefore this option is not convenient for the fluid pressure on a surface. The
**hydro command (page 3.65) may be used to apply a pressure on the deformed surface to
simulate hydrostatic fluid pressure.

The sign convention for the pressure is in the sense of mechanics and not hydrolics. That is
to say that the pressure sign will be positive for pressure in the direction of a surface normal.
A cube submerged in fluid will therefore have negative pressure. Note that if the normal
is defined in a non-standard sense which is toward the interior of the body the sign of the
pressure will be reversed.

Syntax:

**pressure

liset value table . . . [tableN]
faset value table . . . [tableN]

liset Character name of the line set upon which pressure is applied in 2D problems.

faset Character name of the face set upon which pressure is applied in 3D problems.

value Base value (real number, function or file) which scales a table value to determine the
pressure magnitude.

table Character name for a valid loading table or tables which will describe the pressure in
time.

Z-set — Non-linear material
& structure analysis suite 3.68

****calcul

***bc

**pressure from function

**pressure from function

Description:
This boundary condition extends **pressure (3.68): the pressure may depend on time and
coordinates.

Syntax:

**pressure_from_function

*nset nset name
*function function(t,x,y,z);

nset name is the name of a valid node set (nset) where the pressure is imposed. Note that
the corresponding bset must also exist (and have the correct orientation).

function specifies a function, used to compute the pressure value.

Example:
From $Z7TEST/Static_test/INP/bc_pressure_from_function.inp:

**pressure_from_function

*nset top-ext

*function 1.+ (x/50.) ;

Note:
The syntax

**pressure top-ext function 1.+ (x/50.); my_table

may also be used, if table loading desired.

Z-set — Non-linear material
& structure analysis suite 3.69

****calcul

***bc

**radial

**radial

Description:
This boundary condition allows imposing radial displacements which simulate the expansion
or contraction around a group of nodes. An example is the shrinking or expanding of tubes.

Syntax:

**radial

nset name origin direction value [table]

nset name Character name of the nset where the condition is applied.

origin Vector form for the origin where the expansion axis passes. A vector form will give
the two or three coordinates necessary in parenthesis. An example is (1. 0. 1.).

direction Direction of the axis of expansion. These directions must coincide with the
problem coordinate axis, and are defined with the tokens d1, d2, and d3.

value Real number giving the base value for the conditions magnitude. A positive value
results in expansion and negative contraction.

table Name of a table describing the load magnitude through time (see ***table).

Example:

**radial

str (0.0 0.0) d3 3.0 tab1

�
In 2D the expansion axis is necessarily d3.

Z-set — Non-linear material
& structure analysis suite 3.70

****calcul

***bc

**radius

**radius

Description:
The radius condition imposes an indentation profile of constant radius. The condition is valid
only in 3D mechanical problems with the radius profile in the U2 direction.

The radius profile is applied as the inverse of the radius during deformation. This allows
a zero radius (flat surface) to be deformed in sequence to the given radius. The surface is
therefore tightened into the radial form. The exact expression used to calculate the radius at
the increment i between the start of a sequence s and the end e is:

1

Ri
=

1

Rs
+

i

Ninc

(
1

Rs
− 1

Re

)
with Ninc the number of increments in the sequence.

If the radius value is positive, the center of the deformation profile will be located in the
negative z space. The inverse statement is of course true as well.

Syntax:
The radial condition takes the following syntax:

**radius nset name value [table]

nset name The character name of the node set upon which the condition is applied. This
node set must be defined in the plane z = 0.

value Base value (real) for the radius. The base value is a multiplicative scale for the table
values at all times.

table Character name for the table which describes the condition’s magnitude.

Example:

**radius

surface 100.0 tab1

Z-set — Non-linear material
& structure analysis suite 3.71

****calcul

***bc

**rotation

**rotation

Description:
This condition rotates all or part of a structure about (1) a fixed point, (2) a node of the mesh.
This condition functions in 2D or 3D mechanical problems. For the 2D case, the rotation is
always about the third direction axis.

+ve rotation

Nodes

+ve rotation2D
3D

axis

origin

origin

Syntax:
The syntax for 2D problems is the following:

**rotation [node]

nset name ((origin) num node)
angle [table]

For 3D problems, the syntax is slightly changed:

**rotation [node]

nset name [num node] (axe)
[(origin)] angle [table]

node Optional keyword which specifies that the condition’s center of rotation will be defined
about a node of the mesh.

nset name Name of the node set upon which the condition is active.

origin Origin of rotation from which the displacement field is calculated. This point is given
using vector syntax.

num node Integer node number defining the center of rotation in the event that the node

keyword was given.

angle Real value in degrees acting as the multiplicative factor for the condition magnitude.
At any time, the rotation angle will be this value times the given table value.

table Name of a valid loading table.

Z-set — Non-linear material
& structure analysis suite 3.72

****calcul

***bc

**rotation

axe Vector giving the axis of rotation. Note that the Cartesian axes are defined by X:
(1. 0. 0.), Y: (0. 1. 0.), Z: (0. 0. 1.).

Example:
Several examples of the rotation syntax are given below. These each give the corresponding
test name user the Static_test directory.

% ztole3m

**rotation bord (0. 0.) 360.0 tab1

% hook_ld2

**rotation node sommet 1 180. tab

% cuberot

**rotation rot (1. 0. 0.) (0. 0. 0.) 360. table

Z-set — Non-linear material
& structure analysis suite 3.73

****calcul

***bc

**shear

**shear

Description:
The shear BC imposes a tangential pressure along a pre-defined line set in an analogous
fashion as in the **pressure command. it is impossible to impose a shear along a face set,
thereby limiting its applicability to 2D problems.

Syntax:

**shear

liset value table . . . [tableN]
. . .

liset Character name of the line set where the shear pressure is applied.

value Real base or scaling value for the condition.

table Character name for a valid loading table or tables which will describe the pressure in
time.

Example:

This example is presented as a useful template for testing material behavior in shear. The
single square element is defined as follows:

***geometry

**node 8 2

1 0.0000000 0.0000000

2 1.0000000 0.0000000

3 1.0000000 1.0000000

4 0.0000000 1.0000000

5 0.5000000 0.0000000

6 1.0000000 0.5000000

7 0.5000000 1.0000000

8 0.0000000 0.5000000

**element 1

1 c2d8 1 5 2 6 3 7 4 8

***group

**liset s1

quad 1 5 2

quad 3 7 4

**liset s2

quad 2 6 3

quad 4 8 1

*nset bottom

1 5 2

**nset corner

1

***return

Z-set — Non-linear material
& structure analysis suite 3.74

****calcul

***bc

**shear

A shear stress loading may be applied with the following boundary conditions in the input
file:

***bc

**shear

s1 exp 1. tab

s2 exp -1. tab

**impose_nodal_dof

bottom U2 0.0

corner U1 0.0

Z-set — Non-linear material
& structure analysis suite 3.75

****calcul

***bc

**static torsor

**static torsor

Description:
The static torsor BC imposes a static torsor (resultant and momentum) on a nset. This means
that the sum of the action of every nodal forces of the nset is equivalent to the specified static
torsor. It is an ill-posed problem since we add 3N unknowns (nodal forces in the three
directions) and only 6 equations (3 equations for the resultant and 3 for the momentum).
This BC is therefore associated to a rigid body motion of the nodes of the nset through
a **mpc_rb relationship (see page 3.123). Note that the user doesn’t have to define the
**mpc_rb relationship, it is done automaticallly.

When a **mpc_rb is applied, only master 6 dofs over every dofs of the nset remain in
the linear system. A small system of equations is then solved where the 6 remaining external
forces associated to the 6 master dofs are computed.

Syntax:

**static_torsor

*nset nset
*resultant vector
*momentum vector
*point vector
*table value table name

Where nset is the name of the nset where the torsor is applied. *resultant and *momentum

define the resultant and the momentum at the point defined by the *point command. value
and table name define the multiplicative factor of the torsor.

Example:

***bc

**static_torsor

*nset top

*resultant (5. 1. 0.)

*momentum (0.01 0.0 0.)

*point (1. 0.5 0.5)

*table 1. time

Z-set — Non-linear material
& structure analysis suite 3.76

****calcul

***bc

**strain gradient

**strain gradient

Description:
The syntax is as follow :

Syntax:

**strain_gradient

nset dof value table

Z-set — Non-linear material
& structure analysis suite 3.77

****calcul

***bc

**surface heat flux

**surface heat flux

Description:
The **surface heat flux condition is used to impose a surface heat flux on a line set in 2D
or a face set in 3D (i.e. a Neumann boundary condition).
This keyword replaces the now deprecated keywords **flucons and **surface heat.

Syntax:

**surface_heat_flux

liset value table
faset value table

liset Character name for the line set upon which the heat flux is applied in 2D.

faset Character name for the face set upon which the heat flux is applied in 3D.

value Real base value for the heat flux. This value scales the current table value to obtain
the heat flux magnitude.

table Character name of a pre-defined loading table or list of tables (see the option ***table

p. 3.199). The table value determines the exterior temperature.

Example:

**surface_heat_flux

myliset -10. table1

Z-set — Non-linear material
& structure analysis suite 3.78

****calcul

***bc

**convection heat flux

**convection heat flux

Description:
The **convection heat flux BC imposes a convective heat flux on a line set in 2D or a face
set in 3D.

qc = a(T − Te)

This keyword replaces the now deprecated keyword **fluconv.

Syntax:

**convection_heat_flux group
h a
Te Te table

group Character name for the group of line sets in 2D or face sets in 3D where the flux
condition is to be applied.

a Real value for the coefficient a.

Te Real value for the exterior temperature Te.

table Character name of the table describing the flux value in time (see ***table).

The coefficient a may depend on the temperature for this condition. The syntax required
for a convection heat flux condition with this dependence is given below:

**convection_heat_flux group
h temperature

h0 T0
h1 T1
h2 T2
...

Te Te table

The keyword **convection_heat_flux and the two following lines must be repeated as
many times as there are convective flux boundary conditions.

Example:

**convection_heat_flux myliset

h 100.0

Te -10. table1

Z-set — Non-linear material
& structure analysis suite 3.79

****calcul

***bc

**interface heat

**interface heat

Description:
The **interface heat BC option is used to impose an inter-facial heat transfer with thermal
resistance between two line set boundaries in 2D, or two face set boundaries in 3D. The inter-
facial flux will be calculated as:

flux = a(T1 − T2)

where T1 and T2 are the temperature at each side of the interface.
The two interfaces must be in geometrical correspondence, which may be summarized as

follows:

• A line or face at one side of the interface must correspond to exactly one line or face on
the other side of the interface.

• The nodes in the lines or faces in correspondence must be paired exactly one to one.
For this to be true, it is necessary that the distance between two corresponding nodes
be inferior than the distance ε. In result of this requirement is the fact that all nodes
which are not in correspondence have a separation distance greater than ε.

This keyword replaces the now deprecated keyword **fluconv interface.

Syntax:

**interface_heat group1 group2 ε
h a

group1 Character name for the first line set group in 2D, or face set group in 3D.

group2 Character name for the second line set group in 2D, or face set group in 3D.

ε Real value for the critical distance between nodes.

a Base value (real) for the value of the coefficient a.

The coefficient a may depend on the temperature for this condition. The syntax required
for an inter-facial convection resistance condition with this dependence is given below:

**interface_heat group
h temperature

h0 T0
h1 T1
h2 T2
...

Te Te table

The keyword **interface_heat and the two following lines must be repeated as many
times as there are convective flux boundary conditions.

Example:

**interface_heat liset1 liset2 0.001

h 100.0

Z-set — Non-linear material
& structure analysis suite 3.80

****calcul

***bc

**volumetric heat

**volumetric heat

Description:
This BC is used to impose a volumetric heat flux within a given element set.
This keyword replaces the now deprecated keyword **fluvol.

Syntax:

**volumetric_heat

elset value table

elset Character name for the element set (elset) within which the heat generation is
applied.

value Real base value for the heat flux. This value scales the current table value to obtain
the heat flux magnitude.

table Character name of a pre-defined loading table or list of tables (see the option ***table

p. 3.199). The table value describes the magnitude of the flux in time.

Example:

**volumetric_heat

str 20.0 tab1

Z-set — Non-linear material
& structure analysis suite 3.81

****calcul

***bc

**volumetric heat from parameter

**volumetric heat from parameter

Description:
This BC is used to impose a volumetric heat flux within a given element set. The time-space
values are taken from a parameter field.

Syntax:

**volumetric_heat_from_parameter

elset value parameter name

elset Character name for the element set (elset) within which the heat generation is
applied.

value Real base value for the heat flux. This value scales the given parameter field to obtain
the heat flux magnitude.

parameter name Name of the parameter.

Example:

**volumetric_heat_from_parameter

str 20.0 param1

Z-set — Non-linear material
& structure analysis suite 3.82

****calcul

***bc

**volumetric heat in file

**volumetric heat in file

Description:
The **volumetric_heat_in_file BC is used to impose a volumetric heat flux within a given
element set, using input from a file.
This keyword replaces the now deprecated keyword **fluvol_in_file.

Syntax:

**volumetric_heat_in_file

elset value file-prefix

elset Character name for the element set (elset) within which the heat generation is
applied.

value Real base value for the heat flux. This value scales the current table value to obtain
the heat flux magnitude.

file-prefix pre-fix for the input file. The first file of concern is file-prefix.catalog, which
lists the initial and final times for the file inputs (presumably from another time step
of a mechanical problem, see below). Binary files for the beginning of the problem,
start of an increment and end of an increment are: file-prefix.first file-prefix.initial
file-prefix.final The current increment should be within the time bounds given in the
catalog file.

Example:

***sub_problem fem MechTherm/plastic

**transfer integ_nodeparam

*variable q_dot

*file heat_out

In thermal.inp the heat is imported using the current BC:

**volumetric_heat_in_file

ALL_ELEMENT 1.0 heat_out

An example of what’s in the catalog file is:

Time_ini 7.600000

Time 8.000000

Z-set — Non-linear material
& structure analysis suite 3.83

****calcul

***bc

**radiation

**radiation

Description:
This BC for thermal problems applies a radiation heat flux on a line set (liset) in 2D, or a
face set (faset) in 3D problems. The expression for the heat flux is:

flux = a(T 4 − Te4)

Syntax:

**radiation group a Te table

group Character name of the previously defined line set in 2D or face set in 3D.

a Real value for the coefficient a.

Te Real value for the exterior temperature, Te, scale factor. This value will be a multi-
plicative scale of the current table value to determine the external temperature.

table Character name of a pre-defined table name (see ***table). This table describes the
magnitude of the external temperature

The coefficient a is constant. There is currently no provision for temperature or time
dependence in this parameter. We recall that the coefficient is the product of the two terms:

a = σε

with σ the Stefan’s constant (5.73 10−8 W/m2 K4) and ε the grey body constant (no
dimension).

The formula of radiation is not valid except for temperatures defined in on the absolute
scale (Kelvin). This requires therefore that the units throughout the problem be defined
consistently in Kelvin when radiation boundary conditions are applied.

Example:

**radiation myliset 1.0e8 273.0 table1

Z-set — Non-linear material
& structure analysis suite 3.84

****calcul

***coupled resolution

***coupled resolution

Description:
This command is used to specify special controls relating to the convergence of weak coupled
problems.

Syntax:

***coupled_resolution

**iteration iter

Example:
An example control for a coupled problem follows (from
$Z7PATH/test/Coupled_test/INP/MechTherm.inp):

***resolution

**sequence

*time 4.0 8.0

*increment 10 10

*ratio 1.e-4

***coupled_resolution

**iteration 2

Z-set — Non-linear material
& structure analysis suite 3.85

****calcul

***compute G by gth

***compute G by gth

Description:
This command is used to calculate the energy release rate G along a 3D crack front using the
the energetic G-θ method. Various options may be activated to:

• smooth the crack front by defining the number of points of the spline curve used to build
the variational problem solved to obtain the energy release rate (G) and crack virtual
extension (θ) at each control point of the underlying spline,

• output results in terms of conventional stress-intensity factors (SIF) KI , KII , KIII

instead of the default G values,

• define propagation laws based on the previous SIF calculations, that will generate
crack advance values that may be used to drive crack propagation by means of the
***auto_remesh command,

• define various crack bifurcation criteria for out-of-plane crack propagations.

Note that this command may be applied either to conforming cracks FE models (ie. the
crack is explicitely introduced in the mesh, and the crack front is defined by a liset) or xfem
ones (in this case the discontinuity is defined by means of level-sets in a ***xfem_crack_mode

block of commands, see 3.205). Note also, that the input for this command may be built
automatically by the interactive Zcracks and Zxfem commands.

Syntax:
The syntax is as follows:

***compute_G_by_gth component-name
[**crack_front liset-name] | [**xfem]

**nbnodes nbnodes
[**theta ra [rb]] | [**elem_radius nbe]

[**elset elset name]

[**exclude_BE]

[**lip lipname]

[**compute_K]

[**compute_Ki]

[**fatigue preload period]

[**behavior btype]

[**Delta_N deltan]

[**h hmax]

[**optim_dir prec scan]

[**vectorial]

The different option-keys are

• liset-name is the liset (line set of nodes) defining the crack front for conforming mesh
modelizations. This liset is usually automatically created in the FE mesh by the Zcracks
interactive script, and maintained during propagation analysis.

• alternatively the command **xfem should be used for xfem models.

Z-set — Non-linear material
& structure analysis suite 3.86

****calcul

***compute G by gth

• as defined on the next figure, the parameter nbnodes (**nbnodes command) defines
the number of points on the spline curve built internally to smooth out the crack front.
Note that a negative values can be given for the nbnodes parameter, in which case the
number of spline control points is calculated as a fraction of the total number of crack
front nodes (number of nodes in liset liset-name in the conforming mode).

rb

ra
crack front

red: crack front
blue: G integration domain frontier

(defined by a distancera to the crack front)
black: interior domain eliminated duringG integration

(defined by therb radius)

spline control points used to smooth the crack front
(number of points defined by the **nbpointsnb command

• the **theta command defines the size of the integration domain used to build the G-
θ variational problem. As shown on the figure, this domain has the shape of a ring,
centered around the crack front, where ra is the radius of the circular section of the
ring. The optional parameter rb may also be entered, and correspond to the size of an
inner volume, close to the crack front: in this case, the mechanical fields on the first
rows of integration points/elements near the front are not considerered precise enough,
and are eliminated from the integration domain. Note that in practice, the outer radius
ra of the integration volume, should be chosen to stay within the volume (ie. it should
not reach the outer free surface) to avoid erroneous G− θ solutions.

• the command **elem_radius is an alternative way to specify the size of the integration
domain. In this case the outer radius ra is calculated to correspond to nbe times the
average size of crack front elements.

• the optional command **elset can be used to speed up the G-θ volume definition, ie.
only candidate elements in elset elset name will be tested for addition in the volume
integration.

• in general, values near free surfaces (at both ends of opened crack fronts) are less precise
than inside the volume along the crack front. The optional command **exclude_BE

may be used to reset those values, and calculate SIFs at the front ends by extrapolation
of values obtained on inner points.

• command *lip is not used in the xfem mode. lipname is a name of an nset in the FE
mesh, containing nodes on the crack lips. In the conforming mode this nset is used to

Z-set — Non-linear material
& structure analysis suite 3.87

****calcul

***compute G by gth

calculate the tangential plane at each crack front point, an the orientation of the front
normals at this point.

• when the optional **compute_K command is specified, the default G energy release rate
output, is replaced by the mode I KI stress intensity factor. This KI value is obtained
from G using the following equation:

KI =

√
E G

1− ν2

Note that in order to evaluate the previous equation, the G−θ module needs to retrieve
the elasticity coefficients of elements close to the current crack front node, and that the
influence of external parameters (eg. temperature) on those parameters is accounted
for. Note also, that when this option is used, the propagation law behavior automat-
ically takes K values as input, instead of the default G energy release rate, such that
coefficients of those laws should be modified accordingly.

• the optional **compute_Ki command activates the calculation of the KI , KII , KII

stress intesity factors by means of an interaction integral computation based on the
Westergaard analytical solution. This choice has an impact on the branching criterion
for out of plane propagation, that automatically switches to a modal mixity angle α
calculated from those stress intensity factors instead of the defaultGmax based criterion.
In this case, α is computed using the following equation:

α = 2 arctan

−KII/KI +
√

(KII/KI)
2 + 8

4


• command **fatigue preload period is mandatory for fatigue crack propagation, and

defines the cycle period (parameter period) and a preloading initial time value at the
beginning of the calculation during which crack propagation is ignored (parameter
preload). Depending on the above definitions, crack propagation will occur at times
t = preload + ncyc period, where ncyc is the cycle number.

• command **behavior btype defines the model btype selected to compute crack advance,
that will drive crack propagation and automatic remeshing procedures (by means of the
***auto_remesh command). Currently the only model available is the Paris law for
fatigue crack propagation:

θ =
da

dN
= C (∆G)m

where ∆G is the G variation during the cycle (or K if the **compute_K keyword is
activated) computed at each point along the crack front.

• command **Delta_N dn defines a multiplication factor dn applied to the crack advance
θ calculated with the propagation law specified by the **behavior command. This
option may be important to insure that a significant crack advance will occur at each
simulated cycle in the FE analysis, and that automatic remeshing is indeed pertinent.

Z-set — Non-linear material
& structure analysis suite 3.88

****calcul

***compute G by gth

• command **h hmax is another way to control the value of the multiplication factor dn
applied to the θ values. When a positive value is given, hmax is the target crack advance
when remeshing occurs, and the multiplication dn is calculated accordingly:

dn such that hmax = max
i

{
dn

θi
θmax

}
where θi is the crack advance at point i on the crack front, and θmax the max value of
θi on all crack front points. When a negative values is specified, hmax defines a target
crack advance of hmax times the mean size of elements along the crack front.

• the command **optim_dir prec scan triggers out-of-plane propagation. Without this
keyword, the crack advance direction always lie in a plane corresponding to the initial
crack definition: in the xfem mode this plane is characterized by the first levelset defini-
tion, and in the conforming mode the **lip nset allows this tangential plane calculation
at each crack front point.

When a Gmax bifurcation criterion is used (which happens when no keyword
**compute_Ki has been specified, see above), 2 methods are available to compute the
angle αmax (at each crack front point) for which G = Gmax.

First one (default case) is a dichotomy search where parameter prec is the precision, and
scan the angle variation used during the scanning of angle values needed to intiate the
dichotomy algorithm. Angle values should be entered in degrees, and a typical definition
is:

**optim_dir 1. 15.

for a precision of 1 degree in the calculation of the modal mixity angle, and a scan of
values every 15 degree to calculate the initial dichotomy interval.

The second method is activated with the **vectorial keyword, and is based on the
calculation of G in 2 orthogonal directions. The first direction, along the tangential
crack direction, gives a so-called GI value. Then a second GII value is calculated in
a direction orthogonal to this tangential plane. The branching angle α for the new

propagation direction is then defined as: α = arctan
(
GII
GI

)
.

Example:

% Conforming mode example:

***compute_G_by_gth FRONT0

% G-theta problem definition

**crack_front FRONT0

**nbnodes -8

**elem_radius 3

**elset NEW

**lip lip

% SIF output options

**compute_K

**compute_Ki

**excludeBE

Z-set — Non-linear material
& structure analysis suite 3.89

****calcul

***compute G by gth

% crack propagation law definition

**fatigue 0.000000e+00 2.000000e+00

**behavior paris

C 1.000000e-06

m 3.000000e+00

**Delta_N 100

**h -2.0

% out-of-plane propagation

**optim_dir 1.000000e+00 1.500000e+01

Example:

% XFEM mode example (note, no out-of plane propagation)

***compute_G_by_gth gtheta_a

**xfem

**theta 0.3 0.0

**nbnodes 3

**behavior paris

C 335.298

m 3.74

**Delta_N 2000

Z-set — Non-linear material
& structure analysis suite 3.90

****calcul

***contact

***contact
Description:

The ***contact section defines zones of contact in static and dynamic mechanical problems.
Typically, applying contact is one of the more troublesome aspects of nonlinear finite element
analysis, because of increased discontinuities and sometimes unavoidable over- and undercon-
straints. This is above the obvious increase in modeling and input file complexity. After Z-set
version 8.2, major updates to the contact system have been made which hopefully increase
the robustness and quality of contact mechanics. The algorithms of Z-set are particularly
good at avoiding global convergence issues with chatter, and in performing well when there
are large differences in the relative stiffnesses of the contacting parts.

Contact is enforced with a group of contact zones. Zones are modeled by a node set acting
as the impactor (slave) surface which may come in contact with a target (master) surface area.
Each zone may have a different contact model (law) with or without frictional behaviors, and
can include a variety of control parameters. The contact condition is defined in terms of a
contact stress, but can alternatively be defined directly in terms of nodal reaction forces.3

LISET/FASET

LISET/FASET and NSET
Impactor/slave

Target/master

To define contact zones, one must identify target/master surface areas, and corresponding
impact/slave sets of nodes. Under normal use, i.e. stress-based contact, a node set (nset) is
required for the impactor side, and a boundary set (liset or faset) is required for both target
and impactor.4 The boundary sets must be set up so that the normals point outward (see
page 5.7), which can be verified graphically in Zmaster using the Bset normals option of the
Mesh Bset... command. An example view of a properly set up two-dimensional example
is given in the above image, where the target nset is not visible because it coincides with its
corresponding liset/faset (as it should).

3Note that for second order interpolation functions the magnitude and even direction of the nodal reactions
is not intuitive. The fact is that treating nodal reactions directly assumes a discrete force acting over a zero
area, which of course results in a singular stress in a continuum. Thus for these higher interpolations the only
real choice is to deal with stresses distributed over an area.

4This is in contrast to older versions where a bset was required for the target only. A facility is available to
automatically generate the impactor bset from its nset, but in general it is preferable to set this up ahead of
time. One can use the ***mesher **bset command (page 2.16) with the *use nset sub-command.

Z-set — Non-linear material
& structure analysis suite 3.91

****calcul

***contact

Note that if contact is occurring on only one node, or if there is a zero radius corner in contact,
the contact stress will still be distributed over the adjacent boundaries. If the purpose of this
modeling is to impose a boundary condition, or if the frictional behavior is not important, it is
possible to use the **force_basis option, or to define the impactor boundary set with a dot
set. In the latter case, each node has unit area and does not have any additional connectivity.

Solution method:
Contact introduces an additional system of constraints on the displacement field. These are
implicitly defined in terms of the contact stresses. The contact strategy in Z-set consists in
solving a sub-problem for the contact stresses and relative displacements between surfaces,
from which the additional global constraints are computed (a process very similar to a sub-
structuring problem). The nonlinear contact solution is thus done by running “sub-space
iterations” depending on the chosen contact law, and a flexibility matrix found from the
global stiffness. The flexibility matrix is a (possibly) full matrix describing the deformation
of each node on a contacting surface due to a unit force on each other node on the contact
surface. Note that these terms will only be zero if the nodes are on separate bodies. The
contact-modified solution intervenes in the global iterative procedure in several steps:

1. An estimate of the global field is made without enforcing the contact in the current
iteration, by applying the classic Newton method using the last converged residual.
This residual consists of both the internal reactions and the added contact reactions
from the last iteration.

2. The flexibility matrix is computed from the global stiffness matrix by using repeated
back solves of unit loads over all contact nodes. Because back solves are being made, it
is very advantageous to have all the contact nodes numbered at the end of the global
unknowns. However, this will in general increase the total bandwidth of the problem.
Very often the computation of the flexibility matrix will be the most important part of
the solution time of a contact problem. Currently the sparse matrix solvers include a
compromise renumbering scheme for best performance.

3. The next step is then proceeding with the “inner” iterations by using this flexibil-
ity matrix to solve for the contact stresses and displacements. There are both di-
rect solvers (involving the inverse of the flexibility matrix) and block diagonal iterative
solvers in case that direct solution becomes too costly. The solver can be chosen with
the **solve_method option. By default, the currently implemented contact laws use
a direct solver. Running in verbose mode (either using the -v command line switch,
the **verbose output option, or by using the **verbose_contact contact option) will
show a great deal of additional output on the progress of the local contact solution.
This option should be enabled if there are any difficulties with the contact solution.

4. The last stage updates the set of global residual equations to include the contact re-
actions, which will in turn be used for the next dof prediction in the global Newton
iterations.

The contact algorithm outlined above has many advantages, at the cost of computing the
flexibility matrix. Firstly the method isolates the severe nonlinearities involved in solving the
contact state from the global material and geometry nonlinearities. In particular, the effect
of “chattering” is almost totally isolated to the local contact iterations, where it is very much
more efficiently treated. In addition, the local system defining the contact is nonsymmetric

Z-set — Non-linear material
& structure analysis suite 3.92

****calcul

***contact

in the case of sliding friction, but because these terms are solved only in the local iterations,
the global matrix can remain symmetric even under high friction (as long as other equations
have led to a symmetric tangent before the contact has been considered).

Contact behavior:
The contact behavior is defined in terms of the quantities schematically represented in the
following figure:

Node position at
current iteration

ξ

ξ2

1

nun ut

σ
d

Node position
at start of increment

First
Contact

As shown, there is a normal mode of contact (to be enforced to null within a given limit), and
a shear mode with a displacement vector defined in local coordinate axes (ξ1, ξ2) of the face
element. The following variable definitions are used in the descriptions of the contact laws:

σ the normal contact stress (scalar), defined with compressive values being positive.

τ the tangent stress vector.

un the normal displacement (scalar) between potentially contacting surfaces. Values greater
than zero have a gap between the surfaces and values less than zero indicate a penetra-
tion.

dut the incremental tangent displacement (vector), measuring the projected slip on the
element face during the increment.

kn, kt intrinsic contact stiffnesses in the normal and tangent directions (units of
stress/length), as estimated by the code from the global matrix.

µ (not drawn, dimensionless scalar) the friction coefficient as a fraction of the normal stress.

With these variable definitions we describe the following contact models:

normal contact with the following auxiliary variables σ̂ = σ − knun and τ̂ = τ − ktdut,

Z-set — Non-linear material
& structure analysis suite 3.93

****calcul

***contact

the normal contact law is expressed as

if σ̂ > 0

then

knun = 0

if |τ̂ | < µσ

then ktdut = 0

else τ = µσnt with nt = τ̂/|τ̂ |
else σ = 0, τ = 0

The normal and tangential stiffnesses kn > 0 and kt > 0 are normalizing parameters
which are automatically set by the program.

penalty contact is identical to normal contact, except that it allows for the contact con-
straints to be violated using the penalty parameters in the normal and tangential direc-
tions γn and γt. The larger the penalty, the more the constraint is satisfied. Numerically,
these penalty parameters tend to make the local contact matrix diagonally dominant
and can condition the matrix under situations where other constraints conflict with the
contact constraints. When the penalty parameters approach infinity, the penalty con-
tact model behaves exactly as the standard normal contact. In addition, in problems
with dynamic impact, it is useful to include a term β which effectively damps any oscil-
lations introduced by severe impact, while introducing only a small penalty under less
impulsive conditions. Defining the auxiliary forces σ̂ = σ−

[
γ−1
n σ + kn(un + βγ−1

n dun)
]

and τ̂ = τ −
[
γ−1
t dτ + kt dut

]
, the penalty contact model is expressed as

if σ̂ > 0

then

γ−1
n σ + kn(un + βγ−1

n dun) = 0

if |τ̂ | < µσ

then γ−1
t dτ + kt dut = 0

else τ = µσnt with nt = τ̂/|τ̂ |
else σ = 0, τ = 0

isotropic coulomb is almost identical to penalty contact, with the exception that the
friction stress is limited by a user-defined maximum shear strength τmax. Thus, the
normal contact model is a subset of the penalty contact model, and the penalty contact
model is a subset of the isotropic Coulomb contact model. Defining the auxiliary forces
σ̂ = σ −

[
γ−1
n σ + kn(un + βγ−1

n dun)
]

and τ̂ = τ −
[
γ−1
t dτ + kt dut

]
, the isotropic

Z-set — Non-linear material
& structure analysis suite 3.94

****calcul

***contact

Coulomb contact model is expressed as:

if σ̂ > 0

then

γ−1
n σ + kn(un + βγ−1

n dun) = 0

if |τ̂ | < min(µσ, τmax)

then γ−1
t dτ + kt dut = 0

else τ = min (µσ, τmax) nt with nt = τ̂/|τ̂ |
else σ = 0, τ = 0

orthotropic coulomb is a generalization of the isotropic coulomb model.

Z-set — Non-linear material
& structure analysis suite 3.95

****calcul

***contact

Syntax:
Contact takes a number of main control commands, and sub-blocks defining the different
zones and behavior models. One can alternately define the contact model to apply to all
zones, or zone-by-zone.

�
The **soft_param and **penalty_param commands are no longer supported in versions

8.2 and newer. This is now specified using the **zone *behavior_coef command, as de-
scribed below for each specific contact model. A warning will be issued, but these commands
will be ignored.

***contact [contact model]

**zone [contact model]

zone subcommands
[**conv precision max iter [force precision]]

[**stable eps [precondition|damp]]

[**init_d_stress [sequence]]

[**force_basis]

[**solve_method direct|iterative]

[**limit_activity t1 t2]

[**spy_node node [node] ...]

[**verbose_contact [filename]]

**zone defines a contact zone, as well as the law defining its contact model. Current (as
of version 8.2) contact models are normal, penalty, coulomb and ortho coulomb. The
keyword soft is deprecated and automatically converted to penalty instead. More than
one zone may be specified. If multiple zones exist which all use the same contact model,
then the contact model may be specified immediately after the ***contact command.
Available sub-options are described on page 3.100.

**conv defines the convergence parameters. The first (real) parameter precision defines a
non-dimensional tolerance defining the reduction of the contact residual relative to the
residual at the beginning of the inner contact iterations (i.e. the global problem residual
without the additional contact influences of this global iteration included). A moderate
relative value is therefore quite acceptable, even for problems needing a high absolute
final residual.

The default value of 1.e-5 is quite small, so in most cases this command will be useful.
A recommended value of 1.e-2 indicates that the contact convergence is two orders of
magnitude smaller than the current global convergence state. Unless it is believed that
the influence of contact is very very significantly altering the global behavior, this value
should be ok.

The second (integer) parameter is the number of iterations before contact divergence will
be signaled (default 200). The last optional (real) parameter force precision indicates
the desired magnitude of the contact residual relative to the magnitude of contact stress
(default 1.e-5). Only one of the two convergence criteria needs to be satisfied in order
to achieve convergence.

Unlike previous versions, the contact solution algorithm in 8.2 always assigns the initial
guess of the contact stresses based on the contact stress determined from the previous
global iteration. As the global iteration converges, the initial absolute error in the local

Z-set — Non-linear material
& structure analysis suite 3.96

****calcul

***contact

contact iteration will also decrease. It is recommended that force precision be set only
as tight as the expected convergence rate of the global iteration. When the global
iterations converge, the absolute error in the contact law will be satisfied to the same
degree as the global iterations.

**stable takes one real value eps (default 1.e-2) and the choice between precondition

(default) or damping. If the static model contains multiple bodies and at least one
of these bodies has a rigid body mode (if the contact constraints are not considered),
then this command is absolutely required. For dynamic problems it is not needed. The
command instructs Z-set to add a term on the diagonal of the stiffness matrix of the
contact nodes, in effect adding a grounded incremental spring to each node involved in
contact. The value of eps then denotes the relative magnitude of the spring constant.

The specifier precondition instructs Z-set to add only the incremental spring to the
stiffness matrix. It does not add the force of the spring to the external forces. This
option stabilizes the contact solution algorithm, but in no way affects the converged
solution.

With the specifier damping, not only the incremental spring is added to the stiffness
matrix, but also the force of the incremental spring is added to the external forces. This
actually affects the converged solution. This specifier can be conveniently used to avoid
quasi-static singularity problems when a free body is not initially in contact in the initial
loading stages. A small value relative to the problem stiffness is recommended, as is a
convergence study to ensure that this numerical technique does not significantly alter
the structural behavior.

**init d stress causes the algorithm to make an initial guess for the stress increments
based on the previous solution, thereby possibly accelerating convergence. This has ad-
vantages especially for monotonic loading paths. For non-monotonic loading paths, the
option sequence disables this guess for the first increment of each sequence, so that the
contact algorithm is not confused too much by sudden changes in loading direction. This
command is somewhat similar in spirit to the ***resolution **init_d_dof command
(see page 3.188). Without this command, the initial guess for the stress increment is set
to zero, that is, the initial guess of the contact stress at the end of the current increment
is assigned a value equal to the contact stress at the end of the previous increment.

**force basis sets the algorithm based on forces instead of stresses. Synonyms: **lumped
and **forced_based.

**solve method specifies the type of solver used for the contact solution. The option direct

(default value for all currently implemented contact laws) uses the recommended direct
solver. A second option iterative uses less memory, but requires more iterations to
converge.

**limit activity only activates the contact conditions between times t1 and t2 (taken as
two real parameters).

**spy node causes Z-set to print out more detailed information of the contact stresses at
the specified list of nodes. These nodes must lie in the node sets given under **zone

impactor.

Z-set — Non-linear material
& structure analysis suite 3.97

****calcul

***contact

**verbose contact gives additional information about the current state of all contact
nodes involved. This information is written to an output file filename, or in absence of
a user-supplied filename to a file called problem.contact info.

Advice when problems occur:
The following hints may help out with common issues of setting up contact problems.

• Use the **verbose_contact contact option to examine the progress details.

• Check the target (master) surface normals to make sure that they point outward from
the target body. This can be easily checked in Zmaster’s Mesh mode, under the Bsets..
popup to observe bset normals. In the case that some normals are inversed, one can use
the inverse_liset (page 2.68) or faset_align mesher commands (page 2.59).

• Check to see that the target is the stiffer and/or less refined surface.

• Check the contact behavior. All contact models from versions before 8.3 are deprecated.
The preferred “standard” model is coulomb which includes penalty parameters for “soft”
behavior in the case of overconstraint, can optionally capped friction behavior.

• Check if any of the bodies are unconstrained in any of the degrees of freedom if not for
contact. In this case, the global matrix will be singular and will no doubt cause problems
during the first prediction of new displacement fields. In this case use the **stable

precondition command with a small value (e.g. 1.e-4). This command adds a small
value to the global matrix pivots for the contact nodes, stabilizing the global matrix
conditioning, but not actually altering the residual computation (i.e. not changing the
physics at all). Of course a large stabilization value makes the global matrix less correct,
and eventually convergence will be inhibited by this parameter. This method is only
needed for static problems.

• Check to see if a body is underconstrained in some dofs, and may not always be in
contact. If this is the case one can use the **stable damp command which will include
incrementally defined springs on the contact nodes with a given stiffness. Please be
certain (by doing an appropriate convergence study) that the value of this parameter
does not actually alter the results.

• Check to see if there are impactor nodes near the point of expected contact. If the
slave surface is too coarse or the warning distance is too large, the contact may not be
properly detected. In particular, if the impactor is too coarse there may be cases where
the impactor does not penetrate the target, but the target does penetrate the impactor.
The definition of the master/slave relationship of contact zones allows the master nodes
to penetrate the slave.

• Check to see if there are sharp convex points in the contact zone. This can cause
problems because the surface normals vary tremendously on the master surface, or by
redistributing the contact stress erroneously around corners of slave surfaces.

• Check the integration order of the elements. Generally underintegrated elements will
produce less oscillations (spatial and temporal) in the solution. This is especially the case
under highly hydrostatic constraint or in locations where there is a rapid change in the

Z-set — Non-linear material
& structure analysis suite 3.98

****calcul

***contact

contact condition (e.g. Hertzian contact problems). This will be especially important
for isochoric plasticity and viscoplasticity problems, or otherwise close to incompressible
elements.

• Check for odd convergence and ‘chattering” when the contact residual rocks back and
forth between two residual values. Sometimes there is a problem with a node alternating
between sticking and sliding contact states. In such an instance increase the slipping
penalty parameter.

Z-set — Non-linear material
& structure analysis suite 3.99

****calcul

***contact

**zone

**zone
Description:

Contact zones define different contact pairs (impactor/target), zone by zone control param-
eters, and contact material behaviors.

Syntax:
The zone syntax is summarized below:

**zone [contact model]

*impactor impactor zone
*target target zone
*behavior_coef

key-value-pairs
[*dont_check_bcs]

[*variable_friction file [position]]

[*warning_distance warning distance]

**zone specifies a contact zone with its specific contact model. Details of each model can
be found in the following pages. Currently (as of Z-set 8.2), valid choices are normal,
penalty, coulomb and ortho coulomb. Multiple **zone commands may exist, each
with its own contact model. If all contact zones have the same contact model, this
model may be specified immediately after the ***contact command, instead of here.
There is no default behavior. Parameters of the contact model are given with the
*behavior coef command.

*impactor (or alternatively *slave) needs the nset impactor zone. The associated bset
(liset or faset) has to exist as well. The bset has to be oriented with normals pointing
away from the interior of the associated body.

*target (or alternatively *master) takes the bset target zone. Again, this bset must be
oriented properly.

*behavior coef sets the parameters of the specific contact model. Details can be found
in the following pages.

*dont check bcs specifies that the code will not check whether contact conditions are
compatible with other boundary conditions that may exist at the same node, as it does
by default. With the default behavior, the code will try to fix any incompatibilities, or
if that is not possible, the contact condition will be ignored. A warning message will be
given if this is the case. This option disables the verification for the current zone.

*variable friction (or *file) specifies a variable friction coefficient µ, depending on the
current and/or cumulated value of tangential slip. This variable friction cannot (yet)
depend on any external parameter, such as temperature. A precise description of this
behavior can be found in the material manual under ***behavior variable friction.
Not implemented for the ortho coulomb contact model.

*warning distance specifies the maximum distance warning distance for which the algo-
rithm will try to detect if contact occurs between target and impactor of the current
zone. In other words, if the distance between target and impactor is larger than this

Z-set — Non-linear material
& structure analysis suite 3.100

****calcul

***contact

**zone

warning distance, the algorithm will not try to detect contact. This distance should
be chosen larger than the decrease in distance between target and impactor during
the increment of interest, otherwise there is a risk of penetration without the contact
algorithm coming into action.

�
The subcommands *friction and *gap are now deprecated, as they are replaced with their
equivalents in the *behavior coef subcommand. Z-set will issue a warning, and in the case
of *friction automatically convert to the new format. The *gap command will be entirely
ignored.

Z-set — Non-linear material
& structure analysis suite 3.101

****calcul

***contact

**zone normal

**zone normal
Description:

This is the normal contact model as described a few pages back. For the meaning of its
coefficient the reader is referred to that description.

Syntax:
The normal behavior zones take all the standard **zone commands, with the following specific
behavior coefficient:

**zone normal

[other zone subcommands]

*behavior_coef

friction mu

The default value is mu = 0.

Z-set — Non-linear material
& structure analysis suite 3.102

****calcul

***contact

**zone penalty

**zone penalty
Description:

This is the penalty contact model as described a few pages back. For the meaning of its
coefficients the reader is referred to that description.

Syntax:
The penalty behavior zones take all the standard **zone commands, with the following specific
behavior coefficients:

**zone penalty

[other zone subcommands]

*behavior_coef

friction mu
[penalty_normal gamma n]

[penalty_slip gamma t]

[damp_normal beta]

Default values are mu = 0., gamma n = 1.e12, gamma t = 1.e2 and beta = 1.

Z-set — Non-linear material
& structure analysis suite 3.103

****calcul

***contact

**zone coulomb

**zone coulomb
Description:

This is the “standard” contact model for contact with Coulomb friction, as described a few
pages back. For the meaning of its coefficients the reader is referred to that description. Note
that this contact model effectively contains the normal and penalty contact models.

Syntax:
The Coulomb behavior zones take all the standard **zone commands, with the following
specific behavior coefficients:

**zone coulomb

[other zone subcommands]

*behavior_coef

friction mu
[max_shear tau max]

[penalty_normal gamma n]

[penalty_slip gamma t]

[damp_normal beta]

Default values are mu = 0., tau max = 1.e12, gamma n = 1.e12, gamma t = 1.e2 and
beta = 1.

Z-set — Non-linear material
& structure analysis suite 3.104

****calcul

***contact

**zone ortho coulomb

**zone ortho coulomb
Description:

This is the orthotropic Coulomb contact model. It is similar to the isotropic Coulomb model,
except that some parameters now have two be supplied with two values instead of one, and
that the initial material orientation (vector) with respect to the master or slave surface now
has to be specified.

Syntax:
The orthotropic Coulomb behavior zones take all the standard **zone commands, with the
following behavior coefficient key-value pairs:

**zone ortho_coulomb

[other zone subcommands]

*behavior_coef

friction mu 1 mu 2
[max_shear taumax 1 taumax 2]

[penalty_normal gamma n]

[penalty_slip gamma s1 gamma s2]

[damp_normal beta]

[direction nx ny nz]

[master | slave]

Default values are mu 1 = mu 2 = 0., taumax 1 = taumax 2 = 1.e12, gamma n = 1.e12,
gamma s1 = gamma s2 = 1.e2, beta = 1., (nx ny nz) = (1. 0. 0.), and the last key-
word has default value slave. Note that this behavior is currently not compatible with the
*variable friction zone subcommand.

Z-set — Non-linear material
& structure analysis suite 3.105

****calcul

***dimension

***dimension

Description:
Because of numerical noise, Z-set sometimes has to make decisions about when a quantity
is very small, small, large, or huge. For instance, when a typical time increment during a
calculation is of the order of 10 s, output is not written to a file at t = 1000 s (if so requested
through the ***output command) when the increment ends at t = 999.9999999 s.

In order to remedy this kind of problem, Z-set has predefined typical values that occur
very often, and defines small as ”multiplier × typical value”. The example above will pass
with the default values: the default value for time is 1.0 and the default multiplier associated
with small is 10−6 (so small = 1.0× 10−6 = 10−6), and since

1000− small = 999.9999990 < 999.9999999 < 1000.000001 = 1000 + small,

output will be written. However, for certain other cases these default values need to be
modified, for instance for impact problems where time increments may come down to the
order of 10−7 s or less. This can be done through the ***dimension command.

The **dimension command lets the user modify the typical values for stress,
deformation, displacement, time and undimensional. The multipliers associated to tiny,
small, large and huge may also be changed. Default values are listed below.

Syntax:
The syntax is as follows:

***dimension

[**unit unit typical]
[**size size multiplier]

unit may be stress, deformation, displacement, time or undimensional.

typical specifies the typical order of magnitude (a positive double value) that will occur for
the quantity unit. The default values are 100. for stress, 10−6 for deformation, 0.1
for displacement, 1. for time and 1. for undimensional. Note: this does not specify
the actual units (despite the name of the **unit command that suggests otherwise).
For example, giving **unit time 1.0e-6 does not mean that all times are measured
in microseconds.

size may be tiny, small, large or huge.

multiplier gives the multiplier (a positive double) associated with the size keyword. Default
values are 10−12 for tiny, 10−6 for small, 106 for large and 1012 for huge. Their
respective values should satisfy tiny < small < 1.0 < large < huge. Note that the
multiplier given here affects all units.

Example:
The following example may be useful for impact problems, where very small time increments
often occur. In absence of these commands, output will not be generated at the proper
instants for time increments smaller than 10−6 s.

***dimension

**unit time 1.0e-6

Z-set — Non-linear material
& structure analysis suite 3.106

****calcul

***eigen

***eigen

Description:
The procedure ***eigen allows to specify the modes and resonant frequencies to extract in
eigen-value problems.

The eigen frequencies are normalized in the following manner:

Max(over the nodes)(
√

U2
1 + U2

2 + U2
3) = 1

And the associated energy for a frequency is calculated as:

E = U.K.U with U normalized as given above

Eigen frequencies are stored in the file named problem.eigen which can be visualized
with the post-processor program. The frequency values are also stored with their associated
energies in an ASCII text file named problem.eigen_info.

Syntax:

***eigen method
nb freq d freq freq max

There are currently two methods implemented to extract eigen values: lanczos and
inverse_vector_iteration (this is the default method).

nb freq is the number of eigen frequencies to find.

d freq is the search interval for the resonant frequencies. If several frequencies are located
in an interval smaller than d freq the calculation may fail to find all the frequencies.
The lanczos method doesn’t need this parameter.

freq max is the maximum value of the frequencies to search for.

Example:
For this example the calculation will search for 8 frequencies and then stop. The calculation
will stop also if the last frequency extracted is greater than 10000 (freq max).

***eigen lanczos

8 10000.

Alternaltively, one can use the inverse_vector_iteration method (note that this
method is slower):

***eigen

8 100. 10000.

The extraction of the resonant modes is made with the method of inverse powers and with
a shifting of frequencies. After having obtained a frequency f , the next frequency is searched
about f + ∆f where ∆f is given by the parameter d freq. The choice of this frequency is
therefore very important.

Z-set — Non-linear material
& structure analysis suite 3.107

****calcul

***eigen

• If d freq is small the calculation may fall back on a frequency already calculated. In
this case the search will be shifted to f + 2∆f and so on until a new frequency is found.
This succession of searches will inevitably add to the cost of the calculation.

• If d freq is large the search process risks to omit intermediate resonant frequencies.

• Lastly if it is desired to have the first resonant frequency it will be necessary to give a
small value for the parameter d freq. If the value is small enough the calculation will
be sure to not skip the first frequency. Searches for subsequent frequencies will then be
very slow however.

Z-set — Non-linear material
& structure analysis suite 3.108

****calcul

***elastic energy

***elastic energy

Description:
This option indicates that a calculation of the global elastic strain energy should be made
and output. This calculation gives the following energy calculation for the structure:

1

2

∫
V
σ̃ : D−1 : σ̃ dV

where D is the elastic matrix extracted from the the material behavior.
The result of this the elastic energy is stored in a formatted ASCII file named

problem.elastic_energy. The output is sequential, with one line per increment of the cal-
culation.

Syntax:

***elastic_energy elset-name
[**frequency frequency]

[**precision precision]

elset-name is a character name for the element set over which the strain energy is calculated.
The predefined element set ALL_ELEMENT may be used to declare the entire structure.

frequency may be used to specify when the energy is computed (by default, it is made at
each increment). This option has the same syntax as output frequency (see p.3.150).

precision is an integer specifying how many significant digits are used in the output file
(default is 6).

Example:
From $Z7TEST/Energy_test/INP/elastic_energy1.inp

***elastic_energy ALL_ELEMENT

Z-set — Non-linear material
& structure analysis suite 3.109

****calcul

***equation

***equation

Description:
This option is used to add linear relationships (equations) between different degrees of freedom
in the problem. This allows the standard set of linear equations to include constraint condi-
tions (MPC = multi-point constraint). In the current version of the code, these supplemental
relationships are resolved by the direct elimination of degrees of freedom.

Syntax:

***equation

**MPC type
...

The relationship types which are currently defined are summarized in the following table:

CODE DESCRIPTION

**free impose an arbitrary relation between a single DOF and any

number of others (p. 3.111)

**mpc1 sets nodal DOFs of a given type to be equal within a node

set (p. 3.112)

**mpc2 sets two groups of nodes on a paired basis. A linear relation

is enforced between the ith DOF in one node set and the

ith node on the other (p. 3.113)

**mpc2x is similar to mpc2, and provides an extended syntax

(p. 3.114)

**mpc2 dof elset Sets a condition similar to **mpc2 between two DOFs be-

longing to ELSETs (p. 3.115)

**mpc3 models sectorial symmetry of the 3-axis (p. 3.116)

**mpc4 sets the DOFs of an node set equal to a surface function

(line set in 2D or face set in 3D); this condition allows

incompatible meshes to be attached at the surface (p. 3.117)

**mpc2d3d combines mixed dimension meshes (p. 3.119)

**mpc periodic periodic boundary conditions (p. 3.120)

**nul div u this procedure imposes a constant volume in the interior of

a line set in 2D or a face set in 3D (p. 3.121)

**mpc rb imposes a rigid body motion on a nset (p. 3.123)

Z-set — Non-linear material
& structure analysis suite 3.110

****calcul

***equation

**free

**free

Description:
This MPC imposes any relation between a single DOF and other DOFs. There are multiple
ways to define the DOFs.

The equation applied is:

s = c1m1 + . . . cnmn + C

Syntax:
This command has a slightly free form, non-standard format.

**free

slave is

master1 coef1
...

masterN coefN
coefficient

The terms above slave and master# are some special definitions of DOFs specific to this
MPC condition. The syntax is given below. The coef# values are real number for the ci
terms above. And coefficient is a real value for the coefficient C. Note that the is above is a
necessary keyword.

node:id:XX nodal dof, id is the node id, XX the dof type.

node:120:U2.

element:id:rk:XX element dof, id is the element id, rk the rank of the dof in the element
(counted from 1 to the number of element dof of type XX), XX the dof type.

element:25:3:EZ.

elset:name:XX elset dof, name is the elset name, XX the dof type.

elset:metal:E33

Z-set — Non-linear material
& structure analysis suite 3.111

****calcul

***equation

**mpc1

**mpc1

Description:
This equation type imposes that a given degree of freedom at all the nodes of a valid node
set are equal in value.

Syntax:

**mpc1 nset name dof name

nset name Character name for a valid node set.

dof name Character name for a DOF keyword. The keywords available for different problem
types are described in the chapter DOF.

Example:
The following example could be used to assure that the top surface of a flat topped structure
remains flat during deformation.

% from cisap.inp

***equation

**mpc1 top U2

Z-set — Non-linear material
& structure analysis suite 3.112

****calcul

***equation

**mpc2

**mpc2

Description:
This equation type indicates that groups of nodes are tied on a paired basis. The ith DOF
in one node set will be equal to the ith node on the other factored by a coefficient, plus a
possible translation.

Alternatively, one can specify element sets to link DOFs belonging to elements. Note that
node set names are search first, which could lead to some problems if element sets and node
sets have similar names.

Syntax:
There are two possible syntaxes. A standard one and an extended one. The standard syntax
is used to simply apply a factor between two degrees of freedom; the default value of ratio is
equal to 1, and the relationship is such as dof2 in name2 = ratio . dof1 in name1

**mpc2 name1 dof1 name2 dof2 [ratio]

The extended one is used to introduce the affine relationship
dof2 in name2 = ratio . dof1 in name1 + translation:

**mpc2 name1 dof1 name2 dof2
*ratio ratio
*translation translation
*inversion

The *inversion keyword may be used to prescribe an inversion of the nset order.

Example:
This could be used to model in 2D a sectorial symmetry following an angle of 45 degrees.
The nodes of the bisection line of the 1 and 2 axis should then be imposed to have the same
displacement following the axis 1 and 2.

This condition also allows modeling of axisymmetric conditions (symmetry in relation to
a point) by taking two symmetrical node sets in relation to a point and tying similar typed
DOFs of the same type with a coefficient of −1.

% from aube.inp

***equation

**mpc2 n_fuite U1 n_fuite U2 0.4431622

On the other hand, the following syntax allows the user to impose a shift between two lips
of a crack.

% from tsqu1.inp

***equation

**mpc2 lipleft U1 lipright U1 *ratio 1. *translation 0.15

**mpc2 lipleft U2 lipright U2 *ratio 1. *translation -0.1

Z-set — Non-linear material
& structure analysis suite 3.113

****calcul

***equation

**mpc2x

**mpc2x

Description:
This equation type indicates that groups of nodes are tied on a paired basis. The ith DOF in
one node set will be equal to the ith node in the other factored by a coefficient, plus a possible
translation:

DOFBY = α ·DOFAX + τ

It generalizes the standard mpc2, by allowing both the translation and the ratio to be given
by a basic value (i.e. the product of a value and a time-dependent table, see p.3.39 for more
details).

Syntax:

**mpc2x

nsetA dofX
nsetB dofY

[*translation value table]

[*ratio value table]

[*cumulative]

[*inversion]

nsetA nsetB character name of the two paired node sets.

translation value5 and table specifying the translation τ .

ratio value5 and table specifying the proportionality coefficient α.

cumulative allows subsequent invocations of this mpc to be cumulated. It is otherwise
forbidden, to avoid accidentally appying twice an MPC on the same DOF.

inversion may be used to prescribe an inversion of the nset order.

Example:
The first example (from $Z7TEST/Hyperelastic_test/INP/ring-3-degrees-mpc.inp) pre-
scribes Uθ = 0 in a sectorial mesh:

**mpc2x % U3 = z/x * U1 (ensures U_theta = 0)

face.2 U1

face.2 U3

*ratio function z/x ; tab_constant

The second example imposes the relative slide of both faces of a crack, where the transla-
tion is stored in an file (one value per node in the nset):

**mpc2x

faceA U1

faceB U1

*translation ascii_file slide_U1.dat tab_crack

5As for boundary conditions, the value may either be a real value, a function or a file.

Z-set — Non-linear material
& structure analysis suite 3.114

****calcul

***equation

**mpc2 dof elset

**mpc2 dof elset

Description:
The syntax is the same as for mpc2 but the condition is used to link DOFs belonging to
elements sets.

Example:
This could be used in the case of periodic elements. Here in the case of large strains periodic
elements:

**mpc2_dof_elset ALL_ELEMENT E12 ALL_ELEMENT E21

Z-set — Non-linear material
& structure analysis suite 3.115

****calcul

***equation

**mpc3

**mpc3

Description:
The mpc3 equation type models sectorial symmetry about the 3rd axis.

The following relation is applied to all the nodes of the given node set:

Uθ = 0.0⇐⇒ U2 = tg(θ).U1

1

2 U

U

θ

θ

r

Syntax:
For this relationship it is required to give a node set name situated on the symmetry plane,
and the angle of the sector in degrees.

**mpc3 nset name theta

nset name Character name for the node set in the plane of symmetry.

theta Real value for the sectorial angle.

Example:

% from zcentrifuge3.inp

***equation

**mpc1 haut U3

**mpc3 p0 1.0

Z-set — Non-linear material
& structure analysis suite 3.116

****calcul

***equation

**mpc4

**mpc4

Description:
The mpc4 relationship is used to interface incompatible meshes. The DOFs of a given node
set will be set to the DOF value on a corresponding boundary. This boundary will generally
be taken on the coarser mesh, and is entered as a line set in 2D or a face set in 3D problems.
Satisfaction of the mpc4 condition is made by DOF elimination on the node set.

liset

nset

The position of each node in the node set is first searched in the corresponding line or face
set. Two cases may present themselves during this search process. The first is that the node
has no projected position on the surface in which case no constraint is applied to that node.
The second case is that the node does have a projected position on the surface. In this case
the DOF type will be verified for existence on the surface and then subjected to the following
relation:

Unset nodes =
∑

surface nodes

NiUi

If the DOF is not found on the surface during the verification no condition will be placed on
that DOF.

It may be noted here that the global solution size (front) will be reduced if the numbering
scheme is such that the element numbers attached to the node set are lower than those
attached to the line or face sets.

. . . continued

Z-set — Non-linear material
& structure analysis suite 3.117

****calcul

***equation

**mpc4

Syntax:
There are two possible syntaxes. A standard one and an extended one. The standard syntax
is:

**mpc4 nset liset (faset)

and the extended one is:

**mpc4

*nset nset
*bset liset (faset)
*delta (dx,dy) ((dx,dy,dz))

The *delta keyword may be used to prescribe a fixed spatial offset between the nset and the
liset. This is useful for instance to impose periodic conditions on a unit cell which exhibits
incompatible pair sides (e.g. for a 2D square unit cell, left and right sides do not have the
same number of nodes).

Z-set — Non-linear material
& structure analysis suite 3.118

****calcul

***equation

**mpc2d3d

**mpc2d3d

Description:
This MPC condition is used to “glue” a 3D mesh to a 2D mesh for mixed dimension analysis.
The masters are the DOFs of the 2D mesh controlling the 3D slave DOFs. DOFs are attached
(equal) if they have the same x1 and x2 coordinates.

Syntax:

**mpc2d3d

nset2d nset3d dof dx

nset2d the name of a node set on the 2D mesh.

nset3d the name of a node set on the 3D mesh.

dof the DOF type to fix (e.g. U1, U2, ...).

dx a real value for the distance criteria for node position equivalence.

Z-set — Non-linear material
& structure analysis suite 3.119

****calcul

***equation

**mpc periodic

**mpc periodic

Description:
This procedure enables one to prescribe an average deformation with periodic boundary con-
ditions, according to

u = Ex+ v(x)

where v(x) is periodic; the components are denoted E11, E22, E12, E21 in the 2D case and
E11, E22, E12, E21, E33, E13, E31, E23, E32 in the 3D case. The actual value of the pre-
scribed average deformation is equal to the product of the basic value i and the value in the
table tab. Concerning the nsets it is important to distinguish faces, edges and corners.

Syntax:

**mpc_periodic [inv]

dof nset1 nset2 component1 value1 component2 value2 ... tab

Z-set — Non-linear material
& structure analysis suite 3.120

****calcul

***equation

**nul div u

**nul div u

Description:
This relationship imposes a constant volume inside a surface (line set in 2D or face set in 3D)
which is linearized by increment. The linearization cumulates an error of the same order as
the incremental deformations. The condition may be strictly respected by demanding error
correction, but only when the volume is calculated as follows: In 2D:∫

x dy or

∫
y dx

In axisymmetric:∫
2πrz dr

In 3D:∫∫
x dydz or

∫∫
y dzdx or

∫∫
z dxdy

Notes:
The surface must be closed, or at the least its limits must have fixed displacements.

This procedure may be introduced in the middle of a calculation by using ***restart. If
the keyword correction is not present after ***restart the volume is maintained constant
from the instant of restart. In the contrary case the volume is maintained constant, but by
taking the reference volume as the volume at time t = 0.

Syntax:

**nul_div_u surf name [correction dir]

surf name Character name of the line set in 2D or the face set in 3D.

correction Keyword indicating that the corrections are to be activated.

dir Direction indicating the manner which the volume is calculated: In 2D plane geometries:

dir=d1 if V =
∫
x dy

dir=d2 if V =
∫
y dx (26)

In 2D axisymmetric geometry:

dir=d2 if V =

∫
2πrz dr

In 3D geometry:

dir=d1 if V =
∫∫

x dydz
dir=d2 if V =

∫∫
y dzdx

dir=d3 if V =
∫∫

z dxdy (27)

Z-set — Non-linear material
& structure analysis suite 3.121

****calcul

***equation

**nul div u

Example:

***equation

**mpc1 bottom U1

**mpc2 bottom U1 top U2

**mpc3 nset1 20.

**mpc4 nset1 surface1

**nul_div_u faset1

Z-set — Non-linear material
& structure analysis suite 3.122

****calcul

***equation

**mpc rb

**mpc rb

Description:
This command imposes a rigid body motion relationship between all nodes of a nset. Mpc
can only define linear relationships between dofs, so that mpc_rb is only valid under the small
displacement assumption. The relationship is reactualized at every increment, so that mpc_rb
can be reasonably used with finite transformation if the increments are small enough.

In 3D, 6 “well chosen” master dofs are sufficient to define the rigid body motion (i.e. 3
translation components and 3 rotation components). They are automatically selected so that
the three rotation parameters can be determined.

Under the small displacement assumption, the displacement ~Ui of every node i (at location
Oi) of the nset can be expressed as:

~Ui = ~Um + ~OiOm ∧ ~θ

where ~Um and ~θ are functions of the 6 master dofs.

Syntax:

**mpc_rb nset

Z-set — Non-linear material
& structure analysis suite 3.123

****calcul

***feti

***feti

Description:
This command allows input of parameters used by the FETI iterative parallel solver, and
therefore may only be included in parallel mode (execution with switch -PP as described in
the chapter about Parallel computing at page ??).

As the FETI solver is based upon a Conjugate Gradient (CG) method to solve the interface
problem arising from sub-domain decomposition, those parameters are mainly conventional
input parameters associated with an iterative CG method.

Syntax:

***feti

**projector proj
**precision eps

[**max_iteration iter]

[**max_standing max]

[**precond type]

[**keep_direction dir]

[**reprojection]

[**init_lp]

**projector proj
After subdomain decomposition the local problem defined on each subdomain may be
singular. To avoid rigid-body motions the FETI solver uses a projected CG algorithm
(see page ?? for reference). Projection of the gradient requires solving a linear system of
equation whose dimension is the total number of rigid-body motions in the subdomains.
The string argument proj specifies the method used to solve this system of equation,
and can be one of the following:

CODE DESCRIPTION

direct Direct Gauss solver

iterative Iterative Conjugate Gradient solver

Direct solver is faster, and this option is strongly advised unless small pivots problems
arise during resolution in which case the iterative option may be more efficient.

**precision eps, where eps is a real value defining the relative precision required for
convergence when solving the interface problem with the CG method. For a system of
equation:

Kq = F

this relative ratio is defined by:

ratio =
||F−Kq||
||F||

and convergence occurs when:

ratio < eps

Z-set — Non-linear material
& structure analysis suite 3.124

****calcul

***feti

**max iteration iter, where iter is the maximum iterations when solving the interface
problem (default is 100).

**max standing max, where max is an integer specifying the maximum number of CG
iterations allowed without any significant decrease of the convergence ratio.

**precond type This optional keyword is used to specify the type of pre-conditioning used
to accelerate CG convergence. Until now, the only pre-conditioner available is lumped.
Pre-conditioning is strongly advised and can significantly reduce the number of FETI
iterations.

**keep direction dir, where dir is the the integer value of the number of orthogonal descent
directions retained during the CG iterations. Increasing dir leads to faster convergence
but is more memory consuming. Default value is iter+1.

**reprojection This subcommand can significantly reduce the number of FETI iterations,
when used in conjunction with quasi-Newton schemes of tangent matrix update (such
as eeeeee or p1p1p1, see the **algorithm command). With this option the descent
directions calculated during previous load increments are reused, leading to convergence
in just a few iterations when the tangent matrix and the load increment stay constant
over several Newton increments.

**init lp When a new resolution is asked for (new iteration, or new increment), this
option allows to reuse the previous interface force field, instead of starting from a zero
force field (which is the default option). This option has to be used together with the
**reprojection option.

Example:

***feti

**projector direct

**keep_direction 150

**precision 0.00000001

**max_iteration 1000

**precond lumped

Z-set — Non-linear material
& structure analysis suite 3.125

****calcul

***file management

***file management

Description:
This command allows the user to adjust Zebulon’s use of external temporary files.

Syntax:

***file_management

[**keep_temporary_files]

[**max_nb_dof num]

[**z7_tmp_dir path]

Example:
The following is an example of user controlled file management.

***file_management

**keep_temporary_files

**max_nb_dof 1

**z7_tmp_dir ./

On a Linux OS, some graphical monitoring of the in-core memory and temporary disk
storage usage is available.

Zrun -monitor myprob >& /dev/null &

Zplot_stats STAT.4390

Z-set — Non-linear material
& structure analysis suite 3.126

****calcul

***fluid structure interf

***fluid structure interface

Description:
The fluid structure interface option is for eigen value extraction problems to model fluid filled
cavities and their effect on dynamic response.

Syntax:

***fluid_structure_interface

**interface

*surface_name surf-name
*fluid_mass_vol value
*free_surface nset-name

Example:

***fluid_structure_interface

**interface

*surface_name interf1

*fluid_mass_vol 1.0e-20

Z-set — Non-linear material
& structure analysis suite 3.127

****calcul

***impose kinematic

***impose kinematic

Description:
This command imposes a kinematic configuration (displacements) for a problem which does
not have any kinematic variables (e.g. thermal or diffusion problems). It is commonly used
for coupled problems.

Syntax:
The syntax is:

***impose_kinematic type
*file fname

Example:

***impose_kinematic from_transfer

*file MechTherm/kine_out

Z-set — Non-linear material
& structure analysis suite 3.128

****calcul

***init dof value

***init dof value

Description:
This procedure imposes the initial values of specified degrees of liberty of the problem (at
t = 0). The values may be either uniform either defined by nset or elset or read from an
initializing binary file. This file may be for example the output from a previous calculation
(see the example).

Syntax:
The syntax used to initialize the problem DOFs is:

***init_dof_value

[dof name elset elset name value]

[dof name nset nset name value]

[dof name uniform value]

[dof name file file name position]

where dof name indicates replacement with the character name of the desired DOFs (see
appendix). The keywords elset and nset indicate the type of set. These keywords require
a set’s name elset name or nset name followed by a real value The keywords uniform and
file indicate the method upon which the values will be loaded. Specifying uniform requires
a real value for value which is the absolute value of the DOF. File storage set by the file

keyword requires a character name for the file, file name, and an integer value for the record
position, position. The DOF values will be taken from this file position in sequence using
single precision 4 byte floating point format.

Example:
This example shows how to load a data file generated from a small C++ program. This source
is as follows:

#include <fstream.h>

main()

{ fstream out("U2.dat",ios::out);

float x=1.;

for(int i=0;i<8;i++) out.write(&x,sizeof(float));

out.close();

}

which sets a uniform value of 1 (for example).
The input for this example could be:

***init_dof_value

U1 uniform 2.

U2 file U2.dat 568

which will set all the u1 nodal displacements to 2, and all the u2 displacements to 1.

Z-set — Non-linear material
& structure analysis suite 3.129

****calcul

***initialize with transfer

***initialize with transfer
Description:

The ***initialize_with_transfer section allows to initialize a computation from the re-
sults of a previous one which have the same material variables. This feature is mainly used
when one needs to modify the geometry of the problem and continue the computation.

Syntax:
***initialize_with_transfer takes a number of main control commands, and sub-blocks
defining the results fields transfer method.

***initialize_with_transfer

[**format result format]

**old_problem result file name
**map result card num
[**use_deformed_mesh]

[**dont_use_deformed_mesh]

[**put_nodes_back]

[**quiet]

[**initial_time time]

[**auto_resume]

[**reequilibrium]

*algo algorithm
*ratio convergence
*iter max iterations

[**skip_nodal_transfer]

[**skip_integ_transfer]

[**nodal_var_transfer]

[*mapping mapping method]

[**integ_var_transfer]

[*integ_transfer transfer method]

**format defines the imported results format. If this option is omitted, the default Z7
format is assumed.

**old problem defines the name of the results database to transfer to current computation.

**map defines the results map to transfer.

**use deformed mesh use deformed configuration of the old mesh to locate the nodes/IP
of current mesh (assumed TRUE if not specified)

**dont use deformed mesh use initial configuration of the old mesh to locate the nodes/IP
of current mesh (use this to disable previous)

**put nodes back when a deformed mesh is used (use deformed mesh) this option allows
to retrieve the initial non deformed configuration on the current mesh by subtracting
the transferred displacement

**quiet run silently without extra messages (default is a more verbose mode).

Z-set — Non-linear material
& structure analysis suite 3.130

****calcul

***initialize with transfer

**initial time set the initial time for the current computation. If this option is omitted,
the default initial time is 0.

**auto resume set the initial time for the current computation to be the last time step
available in loaded results

**reequilibrium run a “zero delta time” increment of computation at the end of transfer
to retrieve equilibrium. This command has the same syntax as **sequence (see page
3.190)

**skip nodal transfer disable the transfer of nodal variables (assumed FALSE if not
specified)

**skip integ transfer disable the transfer of IP variables (assumed FALSE if not speci-
fied)

**nodal var transfer choose the method and its parameters for transferring nodal vari-
ables (use default nodal transfer options if not specified)

*mapping allow to transfer nodal variables between meshes of different dimensions (no
mapping if not specified). The possible mapping methods are summarized:

CODE DESCRIPTION

2d 3d the results from 2D computation are mapped to 3D mesh

assuming extrusion along z direction

axi 2d the results from 1D axisymmetric computation are mapped

to 2D mesh assuming revolution around y direction

axi 3d the results from 2D axisymmetric computation are mapped

to 3D mesh assuming revolution around y direction

**integ var transfer choose the method and its parameters for transferring IP variables
(if not specified, IP variables are extrapolated to the nodes then transferred as nodal
variables by nodal interpolation, finally they are interpolated back to integration points)

*integ transfer The possible transfer methods are summarized:

Z-set — Non-linear material
& structure analysis suite 3.131

****calcul

***initialize with transfer

CODE DESCRIPTION

nearest gp for each integration point in the current mesh, locate the

nearest one in the loaded initialization mesh and simply copy

the value to transfer

nearest gp corrected in this mode, we add a correction step after nearest gp, where

the correction try to enforce the compatibility between trans-

ferred DOF and the IP variables. To achieve that, a local

integration of the behavior is done using the difference be-

tween the transferred gradient and the one recomputed from

transferred DOF

moving least square two types of moving least square interpolations are provided:

linear and quadratic (which is the default one). To choose

an interpolation type add : linear 2D, linear 3D, default 2D,

default 3D

Example:

This example can be found in Transfer test/INP/TransferQuadra.2.inp

***initialize_with_transfer

**old_problem TransferQuadra.1.ut

**quiet

**use_deformed_mesh

**format Z7

**put_nodes_back

*to_file xx.geof

**auto_resume

The same example modified to use moving least square

***initialize_with_transfer

**old_problem TransferQuadra.1.ut

**quiet

**use_deformed_mesh

**format Z7

**put_nodes_back

*to_file xx.geof

**auto_resume

**integ_var_transfer default

*integ_transfer moving_least_square default_2D

Z-set — Non-linear material
& structure analysis suite 3.132

****calcul

***make restart file

***make restart file

Description:
Allows “restart” files to be created at certain pre-defined moments in addition to the default
backup file (.rst).

Syntax:

***make_restart_file when

CODE DESCRIPTION

always save at each increment

end of sequence save at the end of each sequence

end of cycle save at the end of cycles

There is no default for when. The restart files will have the name pb name.rst# where #

is the incremental number of the restart file.

Z-set — Non-linear material
& structure analysis suite 3.133

****calcul

***matrix storage

***matrix storage

Description:
This command specifies which global matrix solver to use.

Syntax:
This command is a one-liner with no sub-commands. The command takes a parameter which
must be a keyword for one of the available solvers.

***matrix_storage type

The possible solver keywords are:

CODE DESCRIPTION

frontal Standard frontal method where the solution is made by

marching across the element “front,” adding and eliminat-

ing degrees of freedom; This is the default

skyline Traditional skyline method

sparse direct Direct (inversion) of a sparse storage matrix6

sparse iterative Iterative sparse storage matrix

Z-set — Non-linear material
& structure analysis suite 3.134

****calcul

***material

**elset

*material

***material

Description:
This command marks the definition of the materials in a structure to be studied. The behavior
of each material is defined in a file with special syntax (see the chapter Material Behavior).
The purpose of this command is therefore to define the material file names, associate these
files to different element sets, and specify other global applications on top of a material model
such as rotation of material coordinates or give local integration methods.

Syntax:

***material

[**elset nom]

*file nom [num]

[*integration]

[*rotation]

[*var_mat_ini]

The sub-procedure **elset is used when there is more than one material. It is nec-
essary then to give the name of the element set considered (elset). In the absence of the
**elset command, the following options with one asterisk will be applied automatically to
the ensemble of elements.

The sub-procedure *file is used to specify the file name for a material file in absolute or
relative pathnames. An optional integer parameter is now available after the file name, giving
the number of material declaration in a particular file. The second example shows this type
of syntax.

Example:
a simple example of the ***material syntax is:

***material

*file mat

For a material with multiple materials in different element sets, and example is:

***material

**elset E1 *file E.inp 1

**elset E2 *file E.inp 2

The program will search the first instance of ***behavior in the input file E.inp and assign
that material to element set E1, while element set E2 will have the material defined after the
second ***behavior in the input file. Please use caution when playing around with instances
like this - Always Verify Your Materials.

Z-set — Non-linear material
& structure analysis suite 3.135

****calcul

***material

**elset

*material

*material

Description:
This option determines the local integration method for a material behavior.

Syntax:

*integration method params

The allowable methods are summarized in the table below:

CODE DESCRIPTION

runge kutta explicit integration with automated time steps based on

integration error

theta method a implicit generalized midpoint integration; this method nor-

mally supplies the best tangent matrix

theta auto a automatic time stepping in the implicit θ-method

theta method b implicit integration by trapezoidal rule

runge kutta The Runge-Kutta method implements a second order explicit integration with
automatic time stepping. Variables are normalized to allow varied variable magnitudes
in “stiff” sets of equations. The method takes two real parameters. These are the
convergence criteria followed by a minimum value for normalization. Standard RK
error calculation for each integrated variable will be normalized by either the increment
of the variable or this second parameter, whichever is greater. the resulting error is
compared with the first parameter.

The Runge-Kutta integration with the gen_evp material behavior provides a tangent
matrix in models with a single inelastic deformation. This matrix is however not consis-
tent with the integration scheme, and thus yields less than optimal global convergence.
The explicit integration also performs poorly in heavily time-dependent problems such as
viscoplasticity. However, some complex models are only implemented with this method.

theta method a The θ-A method is the standard integration for the majority of material
laws requiring integration.

x(t+ ∆t)− x(t) = ẋ (t+ θ∆t) ∆t

This method requires 3 parameters to describe the convergence. These are first the θ
value (real) followed by the residual required for convergence (real) and the maximum
number of local iterations in the integration (integer).

The value for θ must be greater than zero and less than one. It is strongly advised
to use θ values of 1 for time independent (plastic) materials, and 1/2 for time depen-
dent (viscoplastic) problems. Time independent plasticity will normally show strong
oscillations about the solution for values of θ less than 1.

Reasonable values of convergence range from 10−6 to 10−10. Values which are too large
usually lead to poor global convergence. Too small values will not converge due to

Z-set — Non-linear material
& structure analysis suite 3.136

****calcul

***material

**elset

*rotation

numerical roundoff (10−12 is about the limit). Convergence will rarely take more than
25 iterations, and should not take more than 50. If this is the case, there may be some
error in the integration (make a bug report), or the material parameters are excessive
(damage laws may provoke this). If the local iterations are greater than 50 it is probably
better to reduce the global iterations or use automatic time stepping (global or local).

The default integration is dependent on the material law used. Most behaviors modeling
plastic or viscoplastic materials use a default of the θ-method with theta = 0.5 ,eta = 1.e-9
and max iteration = 200.

Example:

% plasticity or large deformation

*integration theta_method_a 1.0 1.e-9 50

% difficult viscoplastic case

*integration theta_method_a 0.5 1.e-6 100

% complex law

*integration runge_kutta 1.e-3 1.e-3

*rotation

Description:
This material option is used to change a coordinate systems by rotation. It is used here to

simplify specification of some materials (anisotropy, etc), but the syntax is general. Other ap-
plications using the rotation object include specification of grain orientations for polycrystals
(see page 3.2), and mesh rotations (see page 2.100).

There are currently two methods for specifying a rotation. These are by vectors of the
rotated coordinate axes in the global coordinate system, and by Euler angles (used for crystal
orientation for example). The first case is displayed in the following figure:

x’

y’

x1

x

y

apply

x

y

z

x’

y’

z’

x1

x3
apply

Z-set — Non-linear material
& structure analysis suite 3.137

****calcul

***material

**elset

*rotation

For the material rotation of this section, the material gradient will be rotated (rotation is
applied) before being integrated by the material behavior. For small deformation mechanics,
this would be a rotation of the strain tensor.

ε′tot = RT εtotR

The material behavior then solves for the flux in terms of the new gradient, which is ε′tot → σ′

for the mechanical problem. Afterwards the flux is rotated to the global coordinates again:

σ = Rσ′RT

�
Note that only the flux is rotated back to the global coordinates, but not the other

quantities such as internal variables. For some material behaviors this can be modified, see
for instance the **global output option of the ***gen evp behavior in the Z-mat manual.

Z-set — Non-linear material
& structure analysis suite 3.138

****calcul

***material

**elset

*rotation

Rotation by giving Euler angles is similar. The significance of the three angles is given in
the following figure:

X

Y

Z

X’

Y’

X’

Y’

Z’
Z’

Y’

X’φ1

φ
φ2

Syntax:
For rotations specified using coordinate axes:

*rotation

[x1 x∗ y∗ [z∗]]
[x2 x∗ y∗ [z∗]]
[x3 x∗ y∗ [z∗]]

The arguments x1, x2, x3 indicate the components of direction vectors for the trans-
formed coordinate frame. Exactly one direction is required in 2D problems, and two directions
are required in 3D. The order of definition is not important. The local coordinate system may
be assembled with any of the geometrical axes. The input vectors will also be normalized by
the program to automatically make unit vectors.

Using the notation here that t1 is the first direction vector defined, and t2 is the second
(for 3D problems), direction vectors of the coordinate system are defined as follows: The first
vector is collinear to t1. The second vector is a vector in the plane defined by t1,t2 and is
perpendicular to t1. The third direction will always be calculated using the vector product
of the first two vectors. The t vectors will replaced by those given by you using the x1, x2,
x3 choices.

For rotations specified using Euler angles:

*rotation φ1 φ φ2

Z-set — Non-linear material
& structure analysis suite 3.139

****calcul

***material

**var mat ini

**var mat ini

Description:
This option allows one to give the initial values for internal or auxiliary material variables.
This option allows specifying any of the material variables, and thus depends on the individual
material model. Common uses are to give the initial porosity or damage for initially porous
or pre-damaged materials.

Syntax:
The syntax for this option requires the name of an internal variable. The variable name is
followed by a real number for the initial value to be applied, or by the keyword function and
a function specification. The variable name can also be followed by either a character name
for a binary data file, or the keyword ascii_file followed by a character name for an ascii
data file. Finally, it is also possible to initialize with a script, introduced by the z7p keyword.

Data files must furnish values for all the integration points stored as float variables in ascii
or binary format. Ascii data files may also contain comments. Functions may only depend on
coordinates x, y and z of the integration points. Any coordinate present in the function, but
not at the integration point (typically a function depending on z for a two-dimensional mesh,
as in the example below), will have a value of zero, so care should be taken in those cases.

The syntax is summarized below:

*var_mat_ini variable name variable value
*var_mat_ini variable name function function ;

*var_mat_ini variable name [ascii_file] file name
*var_mat_ini variable name z7p script name

Example:
Some syntax examples follow:

*var_mat_ini epcum .015

*var_mat_ini

porosity 0.1

grain_size 0.001

epcum epcum.dat

*var_mat_ini

porosity function x*x+(y-2.)-2000.*cos(z);

*var_mat_ini

grain_size ascii_file grain_size_distribution.dat

% from $Z7TEST/Program_test/Material_test/INP/bending.inp

*var_mat_ini eel11 z7p eel11-SC.z7p

Z-set — Non-linear material
& structure analysis suite 3.140

****calcul

***mesh

***mesh

Description:
Under the mesh description command we may specify the formulation used to satisfy the
governing equations of the problem, including assumptions of a quasi-geometrical nature such
as plane stress or plane strain conditions. The formulations possible in mechanical problems
include classical small deformations, Total-Lagrangian, Updated-Lagrangian, or special cases
such as the Cosserat continuum. Thermal problems do not have any alternate formulations.

The procedure also allows specifying a geometry file different than prob.geof.

Syntax:
The syntax for this command is summarized below:

***mesh [element type]

**file filename
**elset elset-name [element type]

*section type
...

**local_frame type
...

**import type fname
**predefined type

The argument element type defines the type of element (its formulation) which will be
used throughout the element set in question. The different types possible are described on
the following pages. In order to simply apply the element formulation to the whole structure,
fill in the element type on the same line as the ***mesh keyword. In order to define different
element types for different regions of the mesh, put the element type keys after **elset

sub-commands.
Note that plane element geometries in 2D require a specification of element formulation

in order to distinguish plane stress or plane strain. The default element type only applies to
axisymmetric geometries in 2D. Element names with plane_strain will enforce the ε33 = 0
condition, while elements with plane_stress enforce σ33 = 07.

**elset elset-name sets the element formulation and possibly other characteristics for a
given element set name. When used, no element formulation should be given after the
***mesh keyword.

*section type this elset sub-command assigns section properties to a shell mesh.
See the separate pages following which describe the particular sections available
(starting at page 3.145).

**file Indicates that the mesh is in a file named other than problem.geof.

**import Indicates that the mesh file is in a separate file, and in a format other than native
Z-set. It is normally recommended to use the batch mesher to translate the mesh before
running the analysis (see page 2.7).

7Plane stress is imposed in Z-set using additional degrees of freedom, and not at the material behavior level,
although this exists too with some of the behaviors (notably gen evp; see page 3.2). For plane stress behaviors,
one must choose ironically plane strain element formulations.

Z-set — Non-linear material
& structure analysis suite 3.141

****calcul

***mesh

**local frame Assigns a local frame to the degrees of freedom attached to an elset (see
page following at 3.146).

**predefined type Predefined elements may be used to quickly perform calculations
on certain meshes. These are limited currently to single elements which can be used
to quickly test and verify material behaviors. The predefined type type may be cho-
sen from the following elements: cax8, cax8r, c2d8, c2d8r, cax4, cax4r, c2d4,

c2d4r, rve1d, rve2d, rve3d, c3d20, and c3d20r. One can use Zrun -H to see the
installed predefined elements.

The elements will be defined in the positive quadrant in a rectangle or cube form with
its limits at 1. Two dimensional elements have liset and nsets defined as bottom, right,
top, and left.

Caution
In each calculation there may exist several different element types, and several different

materials. Unfortunately, the dynamic structure of the program limits the ability to do
exhaustive compatibility verification. Caution must therefore be given to the consistency of
options within a calculation. The verification procedure will be improved in the next version
of the code.

Example:
The following is an example of the “simple” use of ***mesh to assign the whole problem to
be a plane stress case, with a single predefined mesh as a 8 noded 2D element.

***mesh plane_stress

**predefined c2d8

The second example is of a mesh stored in a fully qualified path name file, and two element
sets with different element formulations.

***mesh

**file /home/user/meshes/big_mesh.geof

**elset rubber_part total_lagrangian

**elset stiff small_deformation

Z-set — Non-linear material
& structure analysis suite 3.142

****calcul

***mesh

Mechanical calculations:
The following are brief descriptions of the mechanical element formulations available.

• spr Spring (or pinned truss) elements for one or 2 node geometries (l2d1 l2d2 l3d1

l3d2). This element requires that a valid spring material behavior be assigned to all
such elements (c.f. 3.2). The two node element realigns with the line between those two
nodes, and is therefore non-linear.

• linear spring A linearized version of the spring element, so no non-linearities are
introduced.

• small deformation plane strain small deformation plane strain Mechanical el-
ements in small deformation formulations. The integration volume is that of the initial
structure, and significant rotations may cause erroneous calculation of the strain. The
default 2D geometry is axisymmetric. Choosing the plane_strain option will enforce
the ε33 = 0 condition.

• plane stress Plane stress 2D element formulations. In order to be compatible with
all material behaviors, this element adds degrees of freedom to each Gauss integration
point which represent the strain ε33. These DOFs are used to enforce zero surface
pressure and therefore σ33 = 0. Relationships may however be defined using the MPC
command in order to specify generalized plane strain conditions. Setting the EZ (ε33)
DOF variable to be uniform over an elset yields zero overall applied pressure, but allows
variation in the σ33 = 0 field. The 3-direction strain will of course be uniform.

• small deformation updated plane strain updated plane stress updated Identi-
cal to the non _updated formulations but using the geometry at the end of an increment
as the integration volume. This produces non-linear structural behavior even with linear
behavior models.

• small deformation select int small deformation select int updated Special
version of small deformation elements for linear interpolation to solve the problem
of strong local variations or oscillations in the stress fields (esp. pressure terms).

• cb shell cb shell updated lagrangian Shell elements formulated using the so-called
“continuum based shell” assumption: the mechanical response of the shell element is
computed using an underlying 3D volumic element whose geometrical configuration
is dynamically constructed at runtime by the mother shell element. See for instance
the corresponding chapter in the book: Nonlinear Finite Elements for Continua and
Structures, T. Belytschko, W.-K. Liu and B. Moran, Wiley.

This element type uses 5 degrees of freedom per node: three displacements U1, U2, U3,
and two rotations W1 and W2. Thus the rotation is assumed to be continuous along the
shell.

Note that you must also give the initial thickness of the shell for this elset, using the
following syntax:

**elset shell_part cb_shell

*thickness 0.1

Z-set — Non-linear material
& structure analysis suite 3.143

****calcul

***mesh

• total lagrangian total lagrangian plane strain Elements formulated for large
displacement using Total-Lagrangian assumptions. These elements do not have any
straining under rigid body motions.

• total lagrangian mixte u p total lagrangian plane strain mixte u p Incom-
pressible elements in large displacements. The formulation is a mixed pressure-
displacement Total-Lagrangian method with degrees of freedom for the pressure at
certain nodes.

• total lagrangian mixte u ps total lagrangian plane strain mixte u ps Incom-
pressible elements in large displacements. The formulation is a mixed pressure-
displacement Total-Lagrangian method with a single pressure degree of freedom per
element.

• updated lagrangian updated lagrangian plane strain

updated lagrangian plane stress Updated Lagrangian element formulation for finite
strain calculations. Must be used in the finite strain case for materials with internal
variables such as metal plasticity or porous plastic materials. This element type must
be used in conjunction with behaviors modified for updated Lagrangian methods (see
the command ***behavior).

• periodic periodic plane strain periodic elements in axisymmetric, 3D, or plane
strain. These elements allow one to impose the mean stress values for a peri-
odic cell. Note that the displacement field that is saved by default is the to-
tal displacement field and not only its the periodic part. You can override this
choice and save only the periodic part by appending after the periodic keyword:
periodic_info **periodic_displacement_field.

• smallw smallw updated Continuous mechanical element small displacement, small ro-
tation - 3D only. This element combined with an appropriate behavior such as a smallw
crystal can be used to model texture evolution in a crystal for moderate deformations.

• 2 5D 2 5D updated two and one half dimension elements. These use a 3D material law
with a 2D geometry. There are six degrees of freedom per gauss point (element DOFs)
[t1 t2 t3] and [w1 w2 w3]. The structures displacement field is:

~u (x, y, z) = ~u0 (x, y, z) + ~u1 (x, y)

ux = ux1 + zt1 − w3 (y − Y0) z

uy = uy1 + zt2 + w3 (x−X0) z

uz = uz1 + zt3 + w1 (y − Y0) z − w2 (x−X0) z

With this element, one can use full 3D material behaviors, and fix out of plane degrees
of freedom. The values of X0 and Y0 are modified through the ***specials command.

• pressure Fluid interface mesh pressure elements.

Z-set — Non-linear material
& structure analysis suite 3.144

****calcul

***mesh

*section uniform

• cosserat cosserat plane strain cosserat plane stress Mechanical elements
modified for the Cosserat continuum. This method adds DOFs at each node for an inde-
pendent micro-polar rotation named W3. This method allows limitation of localization
under shear deformation in strain-softening materials. The method uses a characteristic
material length which must be input in the material definition, and the behavior must
be modified for the Cosserat formulation (see the ***behavior command).

Thermal calculations:
For thermal calculations, the type of element is completely defined by the geometry given in
the .geof file. The ***mesh command should thus only be used if an alternate geometry file
name is to be used.

*section uniform

Description:
This command assigns a uniform section of 1D elements to integrate the shell thickness. This
command is a shortcut for having a separate mesh file for the section, which is possible too.

Syntax:

**elset elset-name shell-formulation
*section uniform num-elem ele-type thickness

Example:
Here’s a short example of a shell structure with 2 different section properties.

***mesh

**elset rib mindlin_shell

*section uniform 1 c1d3 .4

**elset flange mindlin_shell

*section uniform 1 c1d3 .25

Z-set — Non-linear material
& structure analysis suite 3.145

****calcul

***mesh

**local frame

**local frame

Description:
This command assigns a local coordinate system to the degrees of freedom attached to nodes
of a given node set. The command is not compatible with every element formulation, and
thus care should be used with this option. When in doubt, ask your supplier for additional
advice.

Syntax:

**local_frame nset
*euler Euler rotation definition
*cartesian Cartesian rotation definition
*cylindrical

center
[axis]

Example:
The following example shows the use of this option to make a sliding boundary condition at
an orientation away from the coordinate axes.

***mesh small_deformation

**local_frame top-ext

*euler 45.0 0. 0.

**local_frame bottom-ext

*cartesian x1 .05 .05 0. x3 0. 0. 1.

x x

y y

z z

U2

U1

U3

Another example is to impose a cylindrical coordinate system. This type linearizes the
curvature, and is thus valid only for very small deformations.

***mesh plane_strain

**local_frame outer

*cylindrical

(2. 1.)

Z-set — Non-linear material
& structure analysis suite 3.146

****calcul

***sub problem

***sub problem

Description:
This command is used to define a sub-problem in a weakly coupled analysis, and specify data
to be transfered in order to interface with other sub-problems.

Syntax:

***sub_problem type prob-name
**transfer type
*variable var-name
*file out-file

...

The available transfer types are described below. In version 8.0 the transfers generate a
separate set of files for each exported variable8, with names out-file.catalog out-file.first
out-file.initial and out-file.final.

integ integparam Make an integration variable (grad, flux, vint, vaux) and exported
variable for use as an *ip type external parameter in another sub-problem.

integ nodeparam Make an integration variable (grad, flux, vint, vaux) and exported vari-
able for use as an *node type external parameter in another sub-problem. These vari-
ables are extrapolated, and will therefore have some error. The extrapolation is also
averaged between elements, so it will not account for discontinuous materials well.

node nodeparam Export one of the problems nodal variables (degree of freedom) for use as
a node based external parameter in another problem (e.g. temperature).

node kinematic Export nodal displacements in a way which is suitable for the
***impose kinematic option (see page 3.128).

8these will be combined into a “transfer” database in the next release

Z-set — Non-linear material
& structure analysis suite 3.147

****calcul

***output

***output

Description:
This command allows management of the output data files. By default, the code will only
store the nodal DOF and associated reaction values in the file problem.node. In order to
have the values of the material behavior variables the user is required to specify some of the
sub-procedures below.

The version 7 of Z-set allows multiple output specifications, so the user may optimize disk
usage for a problem. Normally this is very useful when the structure is to be output only at
certain critical points during the calculation, while data plots may be output more frequently
using the **curve sub-option. Many of these curves may be specified with different output
files, thus automating the post-processing stage of the analysis. Older versions of the code
required saving the entire calculation with the frequency desired for the curves even if their
information was rather specific. Use of output data files for the curves also allows automation
of their generation using standard scripts with plotting software.

Syntax:

***output [name]
[**linear solution]

[**contour]

[**contour by element]

[**value at integration]

[**save in material frame]

[**component name1 name2]

[**test tname]

[*plot]

[*precision digit]

[*small small]

[*gauss var elem id pg id var1 var2 . . .]

[*node var node id dof name1 dof name2 . . .]

[*nset var nset dof name1 dof name2 . . .]

[*liset var liset var1 var2 . . .]

[*node extrapolated node id var1 var2 . . .]

[*element node var node id var1 var2 . . .]

[**curve tname]

[**frequency]

[*dtime dtime]

[*at time1 time2 ...]

[*increment nb increment]

[*cycle cycle1 cycle2 ...]

[**store global matrix matrix type when filename]

[**verbose]

[**output first]

[**save_parameter [list of parameters’ names]]
[**reaction | **no_reaction]

[**ele | **no_ele]

Z-set — Non-linear material
& structure analysis suite 3.148

****calcul

***output

[**node | **no_node]

The optional character name may be used to specify the output file names. In the event
of more than one ***output specification, the use of names will prevent overwriting of the
same files for each output. This is essential to avoid, as the storage records are referenced
using the .ut directory which would be overwritten for two like-named outputs. The default
name will be the problem name problem which was given when running the Z-set program.

Names of the integration point variables are furnished for each material behavior. The
names of the DOFs are given in the chapter DOF.

The sub-procedures are:

**linear solution This option indicates that the solution should be post processed with
the intention to view linear summations of different load cases. The time steps are
thus considered to be “load cases.” In fact, this command only adds the keyword
**linear solution to the problem.ut file header, which can be edited by hand as well.

**value at integration This option indicates that default variables held at the integra-
tion points are to be stored in the file problem.integ. In each material behavior there
will be a special set of variables which are stored by default (documented in the sections
for each behavior). When the problem has more than one material specified, the union
of all variable groups for all materials is stored at each integration point. If the value
is not actually defined for a material at a certain integration point a null value will be
stored9.

**save in material frame This option indicates that default variables held at the inte-
gration points are to be stored in the file problem.integ. By default they are stored in
their local material coordinate system (if a *rotation or a *pre problem treatment is
defined), but not the stress and strain fields sig and eto. With this option the latter are
not only saved in the global coordinate frame, but also in the material coordinate sys-
tem, in additional variables sig lf and eto lf. This option is very useful for composite
materials.

**contour The contour option indicates that the integration point (material) variables
will be stored at the nodal positions in the file problem.ctnod. Material variables are
extrapolated to the nodal positions for all the elements. Each node has therefore a
number of extrapolated values for each material variable to be stored, equal to the
number of elements connected to that node. The recorded output value at the node
will be the arithmetic mean of the individual element extrapolations. Data stored in
this way will incorrectly smooth stress discontinuities across material boundaries. Such
output is however better in the single material case because it assures continuity of
variable fields from one element to another.

**contour by element This output option causes the material variables to be saved at
nodal locations by extrapolation, element by element. The data is stored in a binary file
named problem.ctele. Element extrapolation leaves the discontinuities at boundaries,
and will thus represent the multi-material interfaces correctly. Each node will have a
number of values stored in the output file corresponding to each attached element.

9More intelligent strategies for outputting variable values will be implemented in future versions of the code

Z-set — Non-linear material
& structure analysis suite 3.149

****calcul

***output

The magnitude of discontinuity as observed using this method of extrapolation may
often be used as a measure of the mesh quality. Better meshes should show small
differences element to element in the material variable values.

**component This option allows direct specification of the material variables to be stored.
This allows a reduction of the output file sizes by limiting the material variables output,
or outputting of secondary variables not normally stored by the default output.

The code does not verify that the variables exist, as that would pose problems for multi-
material problems having a defined variable in one element set only. The stored value
for undefined variables will always be zero. Note that if a variable is forgotten with this
option it will be required to re-run the entire problem to obtain its value. It is also
essential to leave this option untouched when using the ***restart options.

Syntax is the following:
**component

name1 name2 ...

where name# are the variable names to be output. One may see all the variable names
defined by each material law by running Z-set with the verbose -v command line switch,
or using the **verbose option (see below).

**save parameter This option indicates that we wish to store the nodal parameters de-
fined in the calculation. These parameters are stored in the file problem.node which
contains the DOF values and associated reactions. These parameters are then able to
be examined together with the calculation results in the post-processor.

**frequency This option adjusts the frequency of output storage for all the options within
an ***output block. The option allows a variety of definitions in problem time or in
increments. If a given output time does not correspond directly to a discrete calculation
time, the next solution after the requested time will be output. The problem is always
stored at the end of the calculation.

The sub-options are described below:

*dtime sets the output in by increment of time. This option takes a single real value
for the increment of time between each output.

*at specifies the exact times for output. This option takes a list of real values for the
output times.

*increment outputs at every specified number of increments. The option takes
a single integer which defines the increments between outputs. For example
*increment 3 will store increments 3,6,9, etc.

*cycle outputs only during the specified cycles numbers. Any number of integer
cycle numbers may be entered after the keyword.

**test is used to output specific data in an ASCII text file. Giving an optional character
name after the **test option will define the name of the output file for all the variables
specified after this option. By default, the filename will be the output name (as given
after ***output or the problem name in the absence of an output name), suffixed by
.test.

The output data will be controlled by a variety of options:

Z-set — Non-linear material
& structure analysis suite 3.150

****calcul

***output

*plot specifies that the output file is to be stored in column format (recommended).
This allows direct plotting of the output data. The variable names will be listed at
the head of the file with the # character before (a standard comment character).

*precision gives the precision for the output variables (number of digits after the
decimal). All variables are output in exponential form. The default precision is 6
decimal places.

*small gives the value below which the result must be considered zero. Default value
is 10−9.

*gauss var Specifies output of Gauss point data. The syntax requires the element
number (integer) followed by the local Gauss point number (integer - numbering is
described in the appendix). After the Gauss point specification an unlimited list of
character names for the material variables to be output is given. These names may
be any of the valid material names as viewed while running with the -v command
line switch.

*node var This option specifies that nodal quantities are to be output. The syntax
requires a node number (integer, or alternatively the name of a nset containing
a single node) followed by a list of character names for the nodal variables to
be output. The variables may be DOF names (such as U1, U2, etc) or the DOF
reactions prefixed with an R ((such as RU1, RU2, etc).

*nset var Stores nodal reactions as summed over a node set. The syntax requires
a node set character name to be given followed by a list of the nodal DOFs from
which the reaction is to be taken. Note that the R is not given here. An example
is *nset_var top U2 which will output the applied load (F2) over the surface
defined by the node set top.

*liset var Output data along a line set. Data is output in separate files for each
output time, so it is strongly suggested to use the **frequency option. The
syntax takes a liset name, and a list of variables to be output on the liset. The
standard definitions X, Y and Z may be used to output the coordinates. Any
other nodal variable is possible to output on the liset. If material variables are
demanded, they will be output using an averaged extrapolation of the adjacent
elements. Example: *liset_var outside Y U1 U2 RU1

*node extrapolated Material variables will be extrapolated to the nodal coordinates.
The syntax takes the node number, followed by a list of integration variables.

*node_extrapolated 22 sig22

*element node var Material variables will be extrapolated to nodes using
the shape function of a single element. This gives the extrapolated value
valid on a material interface where there are may be variable discontinuities.
*element_node_var 14 22 sig22

Note that mixing of the *-_var options may be given in order to force sequential output
of all the variables.

**curve This option is identical to **test with the *plot sub-option automatically set.

**store global matrix allows storage of the global matrix associated to the structure’s
mesh in a file. The matrix may thus be saved at different points in the calculation

Z-set — Non-linear material
& structure analysis suite 3.151

****calcul

***output

and re-used for the calculation of resonant eigen frequency analysis of the pre-loaded
structure (see ***preload). The syntax is the following:
**store_global_matrix

matrix name when filename

[...]

where matrix name is the name of the matrix to be stored, when is the time at which the
matrix is to be saved, and filename is the filename to be used for the matrix. Currently
the only value for matrix name is stiffness matrix which stores the global problem
stiffness, or conduction matrix for thermal problems. Such triplets may be repeated,
in order to write the matrix at different times.

**verbose Specifies verbose screen output during the calculation. As the screen output
is stored in the file problem.msg this option may create a very large file for long (many
increments) problems. It has been found that the .msg file may rapidly become larger
than the primary output files so verbose output is not normally set. This option is
equivalent to using the -v command line switch.

The verbose option is especially useful in problem setup, however, as it causes output
of the local material variables to the screen.

**reaction, ele, node Enables (resp. disables for the no_ prefixed options) the storage
of these values in the results files.

Z-set — Non-linear material
& structure analysis suite 3.152

****calcul

***output

Example:

***output

**test

*precision 4

*small 1.e-6

*gauss_var 1 1 evi11 sig22

*node_var 53 U1

**frequency

*dtime 1.5

*increment 10

**store_global_matrix

stiffness_matrix 10.0 disk.stif

***output

**frequency

*at_time 30. 60.

270. 300.

1770. 1800.

3570. 3600.

7170. 7200.

**contour

**value_at_integration

**save_parameter

***output none

**curve q1.charge

*nset_var top U2

**curve q1.dv9

*node_var 2 U1

*node_var 25 U1

**curve q1.stress_strain

*gauss_var 1 1 eto22 sig22 epcum

Z-set — Non-linear material
& structure analysis suite 3.153

****calcul

***output

**test

*J

**test

*J

Description:
This command is used for calculating the J integral or ∆J using a line set only. The

command will work in 2D plane stress and plane strain only. Any material may be used, and
any standard mechanical element formulation.

The integral is evaluated by performing direct integration of the contour integral

J =

∫
Γ

[
Wnx − σijnj

∂u

∂x

]
dΓ

The calculation will be negative if the path is oriented clockwise. Also, remember that if
there is a plane of symmetry about the crack plane, and you only model this one half, the
associated J integral will be one half of its real value.

Syntax:
The syntax for this output command is the following:

*J liset name [time-ini time-end]

...

Each contour desired should be entered as a separate *J command.
Adding the two optional real values time-ini and time-end will cause the J integral to be

evaluated as the ∆J integral. Note that this is not an incremental version of J as the LEFM
∆K is used, but rather an evaluation of J over a path with residual stresses.
Caution

Because the J integral is computed along a boundary, it is using extrapolated Gauss point
data to the nodes, which is then again re-interpolated to the intermediate points on the line.
This can cumulate some error, especially if the mesh is too coarse. One should verify the
stability of J calculations with respect to path (path independence), and the mesh size.

Also, because this is a ***output option, it is subject to the **frequency command.
As the J integral is integrated over time, for non-linear problems it’s calculation requires a
sufficient number of time steps.

Example:

***output

**contour

**test

*J path1

*J path2

***output

**contour

**test

*J path1 0. 10.

*J path1 20. 30.

Z-set — Non-linear material
& structure analysis suite 3.154

****calcul

***parameter

***parameter

Description:
Using the coefficient mechanism, material behavior may depend on both internal variables
calculated by the material law, and external user specified parameters which are essentially
problem loading. The coefficient syntax is discussed in the ***behavior chapter in the Z-mat
manual.

Use of the parameter mechanism may also intervene directly in the material law such
as thermal deformations which depend on a temperature parameter. This temperature field
may be the output of previous calculations to provide immediate capability of un-coupled or
weakly coupled multi-domain solutions. Other non-standard parameters are also permissible
allowing user data to be used in the calculation. One example is specifying a distribution of
the density, and then making the elastic modulus depend on this density.

There are several methods of specifying the parameters within a geometry.

Syntax:
The baseline syntax for external parameters follows.

***parameter type parameter name
[*node | *ip]

...

type a **-level sub-command for the type of external parameter input which is desired. The
different types are described in the pages which follow, including their specific values.
In the absence of a type (input starts directly with *-level commands, or data entry
fields, the type **file is taken as the default.

parameter name Character name of the parameter. The naming of parameters is inherently
open in the code. However, the use of certain names have particular signification for
different options in the material behavior or global loading. An important example is
the name temperature which is searched by the thermal strain material objects.

*node indicates that the parameter exists at nodal locations, and will be interpolated to
integration points. Record sizes are the number of nodes. This is the default.

*ip indicates that the parameter exists at integration points. The record size will be the
number of integration points in the mesh.

It is imperative that the parameters be defined at all times from t = 0. to the end time of
the problem. Between the times for which the parameter is defined through file, function
or uniform the value will be linearly interpolated. It is therefore desirable that the times of
parameter definition correspond to the end sequence times. Uniform values may be applied
in an analogous manner as the boundary conditions with the use of tables.
. . . continued

Z-set — Non-linear material
& structure analysis suite 3.155

****calcul

***parameter

Examples:
Two simple examples are shown below.

***parameter temperature

0. uniform 125.

1. uniform 175.

2. uniform 175.

3. uniform 125.

***parameter humidity

*ip

0. uniform 0.25

1. uniform 0.25

2. uniform 0.75

3. uniform 0.25

Z-set — Non-linear material
& structure analysis suite 3.156

****calcul

***parameter

**file

**file

Description:
This is the default parameter type. It allows mixed use of uniform parameter values, parameter
values specified by a function and binary file records containing the values of the parameter
field. This parameter type is very similar to the ascii_file type (see page 3.160), but
binary files generally load faster, which is important for very large parameter files. Note:
some command options are available only in Z-set version 8.4 or newer.

Syntax:

**file param-name
[*node]

[*ip]

[*dtime]

[*rec_size size]

[*table_file tablefile name]

[*cycle_conversion start end period]

time uniform value
time function func;
time file filename record

**file takes param-name (a character string) as argument for specifying the name of the
parameter. This name will be used to reference the parameter values elsewhere in the
problem.

*node specifies that the parameter is applied at nodes. This is the default.

*ip specifies that the parameter is applied at integration points.

*dtime converts the absolute time values given in the table below to time increments.

*table file takes as argument the character string table file name as the name of the file
from which the table containing the list of times or time increments with their associated
parameter types (uniform, function or file) can be read. This is an alternative to directly
specifying the table here (see below), and can be useful for automatic table generation
by scripts.

*rec size enter an integer defining the record size. This value should be the number of
nodes for *node type parameters, or the total number of integration points for *ip type
parameters.

*cycle conversion real values for start time of cycles, end time, and cycle period are to be
input. This command generates a variable time which can be used in function records
to define the time.

. . . continued

Z-set — Non-linear material
& structure analysis suite 3.157

****calcul

***parameter

**file

The table specifying parameter values contain the following elements:

time a time value for the given parameter data. Parameter values during the calculation
will be found using linear interpolation between given times. Do not forget to specify a
value for time = 0.0. If the *dtime command is given, the time value becomes a time
increment value. The time values may also be specified as a FUNCTION. This is especially
useful in conjunction with the *cycle_conversion command (see example below).

value a uniform parameter value.

func a function specified in the standard Z-set manner. Do not forget the ; at the end.

filename name of the binary file to use. Different files can be given for different time values.

record record number in the file. These are numbered from zero (0 is the first record).

File format:
The format for the parameter files consists of an ordered list of float (single precision floating
point) values in big endian format. The ordering corresponds to the nodal numbering in the
problem.geof file. Each record therefore comprises only this list of float values for each node.
The record numbers are noted to be the record number (number of the block storing the entire
nodal data set) and not the file position as would be read in C or Fortran programming.

Examples:
The example below shows the use of mixed parameter types in order to impose a variable
temperature field.

***parameter

**file temperature

*node

*rec_size 8

0. uniform 40.

1. file ../DATA/thermal_field.node 1

2. file ../DATA/thermal_field.node 2

3. uniform 120.

. . . continued

Z-set — Non-linear material
& structure analysis suite 3.158

****calcul

***parameter

**file

Here is a relatively complex example using a function to repeat values for many cycles. The
time values are now specified using a function.

***parameter

**file temperature

*node

*rec_size 757

*cycle_conversion 1. 1.e20 60.0

0. uniform 23.0

function 1.0+ cycle*60.0; file mechanical.data 20

function 1.0+ 10.0+cycle*60.0; file mechanical.data 5

function 1.0+ 14.0+cycle*60.0; file mechanical.data 6

function 1.0+ 18.0+cycle*60.0; file mechanical.data 7

...

function 1.0+ 56.0+cycle*60.0; file mechanical.data 19

function 1.0+ 60.0+cycle*60.0; file mechanical.data 20

Z-set — Non-linear material
& structure analysis suite 3.159

****calcul

***parameter

**ascii file

**ascii file

Description:
This parameter type allows an easy input of parameter data with an ASCII file. The use
of ASCII allows simple generation of the table values, for example by using scripts. Just as
for the binary file parameter type (see page 3.157), it allows mixed use of uniform parameter
values, parameter values specified by a function and binary file records containing the values
of the parameter field. Note: some command options are available only in Z-set version 8.4
or newer.

Syntax:

**ascii_file param-name
[*node]

[*ip]

[*dtime]

[*table_file tablefile name]

[*cycle_conversion start end period]

[*rec_size size]

time uniform value
time function func;
time file filename record column

**ascii file takes param-name (a character string) as argument for specifying the name
of the parameter. This name will be used to reference the parameter values elsewhere
in the problem.

*node specifies that the parameter is applied at nodes. This is the default.

*ip specifies that the parameter is applied at integration points.

*dtime converts the absolute time values given in the table below to time increments.

*table file takes as argument the character string table file name as the name of the file
from which the table containing the list of times or time increments with their associated
parameter types (uniform, function or file) can be read. This is an alternative to directly
specifying the table here (see below), and can be useful for automatic table generation
by scripts.

*rec size specifies the size of each data entry record. For FEA problems and *node type
parameters, this is the number of nodes (can be found in the problem.geof file, or in
Zmaster). For *ip type parameters, this is the number of integration points.

*cycle conversion real values for start time of cycles, end time, and cycle period are to be
input. This command generates a variable time which can be used in function records
to define the time.

. . . continued

Z-set — Non-linear material
& structure analysis suite 3.160

****calcul

***parameter

**ascii file

The table specifying parameter values contain the following elements:

time a time value for the given parameter data. parameter values during the calculation
will be found using linear interpolation between given times. Do not forget to specify a
value for time = 0.0. If the *dtime command is given, the time value becomes a time
increment value. The time values may also be specified as a function. This is especially
useful in conjunction with the *cycle_conversion command (see the example given in
the ***parameter **file section on page 3.157).

value a uniform parameter value.

func a function specified in the standard Z-set manner. Do not forget the ; at the end.

filename name of the ASCII file to use. Different files can be given for different time values.

record record number in the file. These are numbered from zero (0 is the first record).

column column number for the data. Column number starts with 1.

Example:
The following is an example of a variable Young’s modulus imposed with an ascii_file

parameter.

***parameter

**ascii_file yng

*rec_size 20

*node

0.0 file param_as_young.inp 0 2

1.e20 file param_as_young.inp 1 2

The file param_as_young.inp of the example above might look like this :

1. 200000.0 % first line in file (rec 0)

2. 195000.

3. 198000.

...

20. 199000. % end of 0th rec

1. 220000.0 % start 1st record

...

The parameter is then applied in the constitutive law:

***behavior gen_evp

**elasticity isotropic

young = yng % young assigned to field parameter

poisson 0.25

**save_coefficients

young

If the parameter is to be applied at integration points, the data file must look like this :

Z-set — Non-linear material
& structure analysis suite 3.161

****calcul

***parameter

**ascii file

1. 200000.

1. 195000.

1. 198000.

2. 211000.

2. 205000.

2. 203000.

...

where the fist colomns indicates the element number. In this exemple, the elements have
3 integration points. rec_size hes to be set to the total number of integration points.

Z-set — Non-linear material
& structure analysis suite 3.162

****calcul

***parameter

**from results

**from results

Description:
The **from_results command indicates that the parameter will be imported from a previous
computation. It can of course be imported from a Z-set computation10 but can also be
imported from other software (Abaqus odb for example). Z-set then does the necessary time
interpolations. In case of non-conforming meshes, where space interpolation is also necessary,
use the **from_results_with_transfer syntax instead (see next page).

Syntax:

**from_results param-name
*database format file base

[*initial_value initial value]

[*remap old name new name]

[*ip]

param-name a character string name for the parameter. This name will be used to reference
the parameter values elsewhere in the problem.

format is the format of the imported file. For example, use Z7 to import Z-set results or
odb for Abaqus. See page 2.8 for a complete list of known formats.

file base is the filename prefix of the results files.

initial value is a constant value to be used at t = 0.

remap : this command allows to rename a field named old name in the results file to
new name in the current computation (actually new name must be /param-name).

Example:
The following is an example of temperature imported from a previous Z-set computation:

***parameter

**from_results temperature

*database Z7 specimen_thermal

*remap TP temperature

10and thus gives an alternate and simpler syntax than **results, page 3.166

Z-set — Non-linear material
& structure analysis suite 3.163

****calcul

***parameter

**from results with transfer

**from results with transfer

Description:
The **from_results_with_transfer command indicates that the parameter will be im-
ported from a previous computation. It is similar to **from_results (see previous page)
and additionally allows for non-conforming meshes by doing the proper space interpolations.

Syntax:
**from_results_with_transfer has the same syntax as **from_results. Refer to the
previous page.

Example:
The following is an example of temperature imported from a previous Abaqus computation:

***parameter

**from_results_with_transfer temperature

*database odb thermal_model

Z-set — Non-linear material
& structure analysis suite 3.164

****calcul

***parameter

**function

**function

Description:
This parameter type is specified as a (t, x, y, z) function.

Note:
If the function only depends on time, you may also use the **table syntax.

Syntax:

**function param-name
*function function(t,x,y,z);
*tables table-names

[*time_independant]

[*node]

[*ip]

param-name a character name for the parameter. This name will be used to reference the
parameter values elsewhere in the problem.

function a (t, x, y, z) function (do not forget the terminating ;)

table-names a (list of) table name entered in a ***table section. If more than one name
is given, the first valid one is used (this validity being decided at each increment).

*time independant This switch allows the parameter to be time independent. The pa-
rameter is then be computed once at the beginning of the computation. This can be
usefull when random numbers are used in the function.

The parameter’s value will be computed as the product between function and table.

Example:

The following is an example of a temperature gradient along x:

***parameter

**function temperature

*function 300. + 600. * x ; % gradient between 300 and 900 degrees

*node

*tables plateau % time dependence is given here

Z-set — Non-linear material
& structure analysis suite 3.165

****calcul

***parameter

**results

**results

Description:
The **results command indicates that the parameter will be read in from a Zebulon FEA
results file (**changing is a deprecated alias for the **results parameter).

Syntax:
The syntax required is:

**results param-name
[*node]

[*ip]

*file_base fname

param-name a character string name for the parameter. This name will be used to reference
the parameter values elsewhere in the problem.

*file base enter fname a file name prefix for the results files. The first file of concern is file-
prefix.catalog, which lists the initial and final times for the file inputs (presumably from
another time step of a mechanical problem, see below). Binary files for the beginning
of the problem, start of an increment and end of an increment are: file-prefix.first
file-prefix.initial file-prefix.final The current increment should be within the time
bounds given in the catalog file.

Example:
The following is an example of temperature values imposed with a table parameter.

***parameter

**results temperature

*node

*file_base MechTherm/temp_out

Z-set — Non-linear material
& structure analysis suite 3.166

****calcul

***parameter

**table

**table

Description:
This type of external parameter is used for uniform values which use entries from ***table

(see page 3.199) to determine the parameter value through time. The input is rather like a
boundary condition.

Syntax:
The syntax required is:

**table param-name
[*node]

[*ip]

value table

param-name a character string name for the parameter. This name will be used to reference
the parameter values elsewhere in the problem.

value a scaling value (base value - decimal input).

table a table name entered in a ***table section.

Example:
The following is an example of temperature values imposed with a table parameter.

***parameter

**table temperature

1.0 temp_tab

Z-set — Non-linear material
& structure analysis suite 3.167

****calcul

***post increment

***post increment

Description:
This command starts reading of any number of post-increment calculations which are to be
processed as additional output, or modifications based on the converged solution.

Syntax:

***post_increment

...

The post-increment sub-options depend on the installed modules, and so may be expanded
by using “plug-ins.” As of Z8.0, the following models are included.

CODE DESCRIPTION

parks Parks method for Stress Intensity Factor

j integral lorenzi a method implementing the J–integral with virtual

crack extension

non local A “weak” non–local model which can be applied to any

state variable

Example:

***post_increment

**parks

perturb elset rg1

tip_radius 55.

da (1.e-3 0.)

da (1.e-5 0.)

**j_integral_lorenzi

perturb elset rg1

tip_radius 55.

da (1.e-3 0.)

**j_integral_lorenzi

perturb elset next

tip_radius 55.

da (1.e-3 0.)

Z-set — Non-linear material
& structure analysis suite 3.168

****calcul

***post increment

**i integral

**i integral

Description:
This option calculates the T stress using the method of Chen etal. [Chen01]. and DeLorenzi
[Hors85]. The implementation is similar to the **j_integral_lorenzi in its use of a virtual
crack extension.

Syntax:

**i_integral

perturb (elset | tip)(name1 node num)
da (dax day) to indicate the crack direction

(and not the crack growth direction !).
tip nset indicates the node correspondong to the tip
young E gives the Young’s modulus
poisson nu gives the Poisson’s ratio
[factor f] indicates a multiplicative factor to be used

in the case of symmetries. Default value is 1.

The T—stress calculations works with small deformation plane stress and plane strain
elements. Like for the Delorenzi or Parks methods, the syntax perturb elset next will
search the next elset surrounding the crack tip. This syntax can be repeated.

Z-set — Non-linear material
& structure analysis suite 3.169

****calcul

***post increment

**j integral lorenzi

**j integral lorenzi

Description:
This option calculates the J integral using the method of Horst and DeLorenzi [Hors85]. The
implementation is analogous to the **parks (page 3.173) in its use of a virtual crack extension.
This method is more reliable (accurate, insensitive to mesh density, and path independent)
for small deformation analysis than the output method *J described on page 3.154. It is
also valid for axisymmetric or 3D analysis where *J is not. However, unlike that method the
**j integral lorenzi is limited to small deformation, and can not calculate ∆J .

Remember that is the case of linear elasticity:

J =
K2

E (1− ν2) plane strain
K2

E plane stress

Syntax:

**j_integral_lorenzi

perturb (elset | tip) (name1 node num)
continuing with as many lines as G calculations

[tip_radius val]
da (dax day)

Refer to the **parks option for a complete description of these options.

Z-set — Non-linear material
& structure analysis suite 3.170

****calcul

***post increment

**non local

**non local

Description:
This post increment method provides a “smoothing” of specified material variables in order
to constrain the gradient in those variables to be below a given limit. This is an important
method in eliminating localization when stiffness drops according to those parameters (i.e.
damage or strain softening). This is a “weak” method in that it allows localization during
the solution convergence of a given increment.

Let d be the non–local variable ; ∆d the local time increment ; ∆dnl the non–local time
increment.

∆dnl

(
~X
)

=

∫
V

∆d(~x)ψ(~x− ~X) dx

ψ(~x) =
1

λNπN/2
exp

(
−||x||2/λ2

)
where N = 1, 2, 3 is the space dimension.∫ +∞

−∞
. . .

∫ +∞

−∞

1

λNπN/2
exp

(
−(x2

1 + · · ·+ x2
N)/λ2

)
dx1 . . . dxN = 1

Using the FE method integrals are discretized using Gauss quadrature. So that

∆dnl(~xi) =
∑
j

∆d(~xj)ψ(~xj − ~xi)Vj = Mij∆d(~xj)

and Vj the volume associated to Gauss point j. where xi, xj are the positions of the Gauss
points (G number of Gauss points).

Due to numerical integration and other limitations (optimizing memory) it is necessary to
correct the M matrix which should fulfill the conditions

[c1]
∑
j

Mij = 1 and [c2]
∑
i

Mij = 1

Several correction methods can be proposed (M →M ′):

average line M ′ij = Mij/
∑

iMij . [c2] is not fulfilled.

average column M ′ij = Mij/
∑

jMij . [c1] is not fulfilled.

diagonal line M ′ii = Mii + (1−∑iMij) and M ′ij = Mij for i 6= j. [c2] is not fulfilled.

diagonal column M ′ii = Mii + (1−∑jMij) and M ′ij = Mij for i 6= j. [c1] is not fulfilled.

iterative Line i is multiply by a scalar li and column j is multiply by a scalar cj .
Conditions [c1] and c[c2]can be fulfilled simultaneously. There are 2×G equations∑

i

licjMij = cj
∑
i

liMij = 1

Z-set — Non-linear material
& structure analysis suite 3.171

****calcul

***post increment

**non local

∑
j

licjMij = li
∑
j

cjMij = 1

Coefficient can be found iteratively:

ck+1
j =

1∑
i l
k
iMij

=
1

MT lk| j

lk+1
i =

1∑
j c
k
jMij

=
1

Mck| i

with l0i = 1 and c0
j = 1.

Syntax:
The command syntax is described below, with a few sub-commands.

**non_local

*lambda lam
*variable var1 ... varN
*elset elset-name
*cut_off val
*normalize type

*lambda takes a real value for λ

*variable list the material variables which are to be the subject of non-local.

*elset apply the method to the given elset name.

*cut off specify a real value for the cut-off.

*normalize replace type with one of the keywords described above (average line, etc).

Z-set — Non-linear material
& structure analysis suite 3.172

****calcul

***post increment

**parks

**parks

Description:
The **parks option indicates that the crack tip energy release rateG is to be calculated by the
perturbation method (c.f. Parks [Park74]). The method is only available in 2D calculations.

Parks’ method advances the crack length a small amount in order to evaluate the energy
release per crack length unit. The obtained stress intensity factor taken from G is thus a
“global” measure of the mixed mode I and II cracking.

C 2

C 1

x

y

 Crack

It is necessary to define a translated internal zone (in the interior of the contour C1). The
perturbed zone by the translation is that constituted by the first arrangement of elements
about the translated contour (contour between C1 and C2). Beyond the contour C2 nothing
will be modified.

The internal translated contour is fabricated from either an element set or a single node
defining the crack tip. These geometrical groups must be defined in the problem.geof file
with the meshing commands described in the leading chapters of this manual. For the case
of axisymmetric calculations, it is necessary to define the radius of the crack tip point.

Note:
The results are stored in the sequential formatted file problem.parks with one line per incre-
ment calculated. Be careful that for for sructures exploiting symmetry (one half the crack is
modeled) the value of G must be multiplied by a factor of 2, while K must be multiplied by
the square root of two.

Z-set — Non-linear material
& structure analysis suite 3.173

****calcul

***post increment

**parks

Syntax:

**parks

perturb (elset | tip) (name1 node num)
continuing with as many lines as G calculations

[tip_radius val]
da (dax day)

name1 the character name of an elset composed of the translation elements.

node num integer corresponding to the crack tip.

val real value designating the radius of the crack tip. This option only applies to axisym-
metric geometries.

da vector describing the virtual advancement of the crack tip.

dax real value for the advancement of the crack along the x axis only. This value may be
negative.

day real value for the advancement of the crack along the y axis only. This value may be
negative.

Example:

***post_increment

**parks

perturb elset inter

da (1.e-2 0.)

da (1.e-4 0.)

da (1.e-6 0.)

da (1.e-8 0.)

da (1.e-10 0.)

da (1.e-12 0.)

da (1.e-16 0.)

da (1.e-20 0.)

da (1.e-30 0.)

da (1.e-100 0.)

Z-set — Non-linear material
& structure analysis suite 3.174

****calcul

***pre problem

***pre problem

Description:
This procedure and its options are executed at the beginning of the problem, before doing
anything.

Syntax:

***pre_problem

**first-pre-problem-type
first-pre-problem-specific options

**another-first-pre-problem-type
...

There may be any number of sub-options defining the different pre problem to treat, and
also any number of ***pre_problem instances.

The different pre problems commands are the subject of the following pages. The following
tables are included as a quick-directory to the pre problems.

General purpose pre problems:

CODE DESCRIPTION

**init z7p rotations used to impose a material rotation to a partic-

ular elset using a z7p program

**layer orientation used to define the stack sequence when a layer

element (c3d16l for instance) is used.

Z-set — Non-linear material
& structure analysis suite 3.175

****calcul

***pre problem

**init z7p rotations

**init z7p rotations

Description:
The goal is there to compute a material frame (material rotation) for the given elset. For all
the integrations points of this elset, the positions if each points is given to a t should then
return a rotation matrix which will be used as the material for that integration point. This
is very usefull for composite materials.

Syntax:

**init_z7p_rotations

*elset name name elset
*script name script

name elset character name of the element set. This must be the name of a valid elset

defined in the geometry file. The rotation will be imposed at every Gauss point in this
element set.

name script The character name of the zLangage script which defined the material frame
as a function of the gauss point positions.

Example:
The following example apply a rotation to all gauss points of the elset called elbow. The
rotation is around the z axis, such that the center is cx=27. and cy=10..

***pre_problem

**init_z7p_rotations

*script rotation.z7p

*elset_name elbow

The script called rotation.z7p is given as follows :

void initialize()

{

global double cx,cy;

cx=27.; cy=10.;

}

void apply()

{

// X,Y,Z : position of the current intergration point

// to be filled by the end-user : FRAME

double angle;

angle = atan((X-cx)/(cy-Y));

angle = angle*180./pi;

FRAME.set_euler_angles_3D(0.,0.,angle);

}

Z-set — Non-linear material
& structure analysis suite 3.176

****calcul

***pre problem

**layer orientation

**layer orientation

Description:
The goal is there to define the stack sequence when a layer element (c3d16l for instance) is
used.

Syntax:

**layer_orientation

*elset name elset
*stack sequence number of layer

frame 1
frame 2
...

[*elset rotation frame]
[*element rotation script/ name script]/

name elset character name of the element set. This must be the name of a valid elset

defined in the geometry file.

number of layer (integer) gives the number of layers of the element definef in name elset.
This number must be consistent with the one defined in ***mesh.

stack sequence used to indicate the type of stack, Define the rotation from the laboratory
coodinate system (in which the material behavior is defined) to the coordinate system
of the ply. Use Euler angle (see page 3.135) or a around the y axis.

*elset rotation frame These rotations are defined using Euler angles. It gives the rotations
to chage the coodinate system from the glabal coordinates to the element coordinates
(see example)

*element rotation script name script/ gives the rotations to chage the coodinate system
from the glabal coordinates to the element coordinates using a zLangage script (see page
3.176).

Example:
First example :
The following example define a laminate composite (0,+45). The material is defined in the
global coordinate system shuch as the fiber direction is z.

***pre_problem

**layer_orientation

*elset ALL_ELEMENT

*stack_sequence y_axis 2

0. 45.

*elset_rotation

0. 0. 0.

For a material define such as 1 is the direction of fibres, 2 and 3 are equivalent

Z-set — Non-linear material
& structure analysis suite 3.177

****calcul

***pre problem

**layer orientation

***behavior linear_elastic

**elasticity orthotropic

y1111 1.63339e+05

y2222 1.02212e+04

y3333 1.02212e+04

Second example :
The next figure shows an example such as the laminate composite is defined by a the (0,+45)
stack sequence, and the elset is rotated at 90 around the z axis.

***pre_problem

**layer_orientation

*elset ALL_ELEMENT

*stack_sequence y_axis 2

0. 45.

*elset_rotation

90. 0. 0.

45°

45°

to the element coordinate system

from the global coordinate system

from the element coordinate system

to the ply coordinate system

x

y

z
y

x

z

x

y

z

Z-set — Non-linear material
& structure analysis suite 3.178

****calcul

***random distribution

***random distribution

Description:
This command creates a random distribution in the structure, which can be used to create
spatially randomized parameters such as material coefficients.

Syntax:

***random_distribution

**name name
**type dimen type
**law law
**load load-file

**name gives a character name to the distribution. This user assigned name will be used
to reference the random value at a particular point in space.

**type specify dimen (real) for the space dimension and a distribution type. The later is
currently restricted to be cellular.

**law law define the type of random law to use. law should be a keyword defining the
type. In the standard distribution, there are the following types available.

CODE DESCRIPTION

uniform Uniform law F (x) = x

weibull Weibull type statistical distribution F (x) = 1 −
exp

[
−((x−A)/b)C

]
discrete User gives F (x)

normal F (x) = erf(x)

These laws are described in more detail in the following pages.

**load is used to load the random field from a pre-existing file. This is used for example
for verification tests where it is desired that the distribution be the same every time the
case is run. One can use this to preserve interesting random distribution cases for more
than one run.

. . . continued

Example:
An example of random distribution being used for radomized coefficients follows.

***random_distribution

**name Erand

**type 2 cellular

*start (0. 0.)

*end (1. 1.)

Z-set — Non-linear material
& structure analysis suite 3.179

****calcul

***random distribution

*cell (.2 .2)

**load random.data

....

***behavior linear_elastic

**elasticity

young random Erand

poisson 0.3

***return

The random distribution can also be used to initialize material state variables.

***random_distribution

**name eelrand

**type 2 cellular

*start (0. 0.)

*end (1. 1.)

*cell (.2 .2)

**load random_iv.data

***material

*file ../MAT/random_iv.mat

*var_mat_ini eel11 random eelrand

****return

Z-set — Non-linear material
& structure analysis suite 3.180

****calcul

***resolution

***resolution

Description:
This procedure is used to fix the calculation parameters and method of resolution for the
global matrix problem Ku = R. Except for the simplest linear problems, at least some of
the procedures sub-options will be required. Non-linear problems are best solved with some
substantial customization of these parameters.

Syntax:
Specification of the method of resolution requires a definition of the form:

***resolution type

which will be followed by a number of options of the ** command level. The possible
types of resolution are summarized in the following table:

CODE DESCRIPTION

newton resolution of type Newton-Raphson, or modified

Newton

bfgs resolution of type BFGS quasi-Newton

riks a Riks solution to pass by local instabilities or snap-

throughs

In the absence of type the default newton will be substituted.
This ***resolution command has a variety of sub-procedures to define load sequencing:

**sequence Define loading sequences.

**cycles Define cycles of loading sequences.

**automatic time Define automatic time stepping.

**init d dof Accelerate convergence by pre-initializing the DOF increment.

**no symmetrize Use the non-symmetric solver.

**max divergence Specify the maximum number of divergences allowable before the prob-
lem stops.

**skip cycles Use the cycle skip algorithm.

use lumped mass Use the lumped mass matrix (only available for **calcul dynamics)

Z-set — Non-linear material
& structure analysis suite 3.181

****calcul

***resolution newton

***resolution newton

Description:
The default algorithm is the newton method, which can be used as a full updated Newton-
Raphson algorithm, or as a modified Newton-Raphson method depending on the *algorithm

choice in the sequence definitions.
Note that the finite element method calculates the following residual:

Ri = Fext − Fi
int

where Fext are terms of the discretized weak form of the problem variational statement due
to externally applied forces, Fi

int are the terms due to “internal forces” (e.g. the
∫
V δε : σdV

virtual work term in mechanics), and Ri is the residual imbalance at an iteration i due to
the non-linearity of the problem. Convergence of a loading step is achieved when a measure
of this residual falls below a desired magnitude.

A truncated Taylor series is used to find the adjustment to the problem variables (degrees
of freedom):

Ri+1
(
qi + ∆q

)
= Ri

(
qi
)

+ K
(
qi
)

∆q

∆qi+1 = −K−1Ri qi+1 = qi + ∆qi+1

Where K is a stiffness matrix. Note that The stiffness can be an approximate measure of
the real stiffness at a give time, and the solution can still be found. Typically however, any
approximations to the stiffness other than the real algorithmic consistent tangent will result
in increased iterations, and a reduction in the convergence “radius.”

Syntax:
The Newton-Rapshon method provides a quadratic convergence: the residual of the problem
to be solved can not theoryticaly increase. Because real problems usually do not fall into the
Newton-Raphson assumptions, one may observe that the redisual increases during iterations.
In this case, use the **line_search option to activate the line search procedure. The idea
behind it is that if the residual increases, it means that the magnitude of the current Newton-
Raphson correction is too large: a search is done along the descent direction to find the largest
magnitude so that the residual decreases (one show that this optimum value always exists).

***resolution newton

**line_search

Z-set — Non-linear material
& structure analysis suite 3.182

****calcul

***resolution bfgs

***resolution bfgs

Description:
The BFGS algorithm is a quasi-Newton method of matrix updating which can be used to effi-
ciently solve large non-linear problems. The algorithm consists of two methods of convergence
acceleration [Matt79]. The first is the updating process which corrects an approximation of
the inverted non-linear tangent with the history of trail solutions and their errors. The second
is a relaxation of the displacement increment to be compatible with the “direction” of the so-
lution. The algorithm requires an initial calculation of the matrix inverse. Further iterations
with the BFGS algorithm do not however require additional inversions of the rigidity matrix,
making the method very efficient for large non-linear structures.

Given an inverted matrix K−1
ini which could have been calculated at the beginning of an

increment, or just one time at the start of the problem (inverted elastic behavior stiffness),
one updates the inverse through the course of iterations as follows:

K−1
N =

 m∏
j=1

Aj

K−1
ini

 m∏
j=1

AT
j



Ai = 1 + wvT

which shows that the storage requirements are simply that of two vectors of size N (the
number of degrees of freedom in the problem). The vectors v and w are calculated using the
changes in displacement and changes in residual between updates.

Syntax:
The BFGS algorithm allows the following syntax to adjust the solution process:

***resolution bfgs [iter][no_optimize]

The parameter iter is an integer specifying the number of iterations which will performed
before the BFGS updates begin. The optional token no_optimize indicates that the optimiza-
tion (line search) procedure is not desired. The line search adds evaluations of the material
law per iteration which may be very expensive for complex material behaviors.
Caution

The contact solutions are not compatible with the BFGS algorithm. Also, the use of BFGS
requires matrix updating of the types eeeee, p1p1p1 or p1p2p2. Use of p1p1p1 requires the
number of iterations iter to be greater than one, and p1p2p2 requires iter to be greater than
two.

Z-set — Non-linear material
& structure analysis suite 3.183

****calcul

***resolution riks

***resolution riks

Description:
The riks algorithm is a method for which local instabilities can be passed in a quasi-static
analysis, such as a bucking situation of a roof collapse. Note that these “snap-though” type
problems are in reality dynamic events which can also, perhaps more appropriately, be solved
using implicit dynamics.

The method assumes proportional loading as well. So if the load at a point is not merely
scaled through time (without change in direction) the algorithm can be used succesfully.

Syntax:
The syntax for Riks allows a number of keywords and keyword parameter pairs to be entered
after the ***resolution command.

***resolution riks option-keys

Example:

***resolution riks

opt 4 % optimal number of iteration

max 30 % maximum number of iteration

div 2. % divergence division factor

maxDs 0.3 %

Plus % Keep going positive..

Z-set — Non-linear material
& structure analysis suite 3.184

****calcul

***resolution

**automatic time

**automatic time

Description:
This procedure sets automatic calculation of the time stepping (increments) within a sequence.
The method will attempt to optimize time steps based on user adjustable convergence and
accuracy parameters, and also provide divergence control. The optimization parameters are
currently limited to the following:

• optimal number of iterations per increment.

• maximum variation in material variables (e.g. max allowable plastic flow).

The step calculation is made by first examining the integrated material variables on which
control has been set. The estimation of the next step size will then be:

∆ti+1 = ∆ti
∆v

∆vi

with ∆ti the last increment of time (just solved), ∆ti+1 the new estimated time step, ∆vi
the internal variable increment just achieved, and ∆v the desired internal variable increment.
This value is calculated for each of the controlled internal variables. The new time increment
to be used for the next increment will be the minimum of these ∆ti+1 values. It is remarked
that control may be placed on any of the internal variables existing in the problem. This
includes variables defined for only a portion of the structure in a multi-material problem.
The problem variables may be confirmed at run-time with the -v command line switch or the
**verbose output command.

If the time stepping is also controlled by the number of desired iterations, an additional
estimation of time step is made as follows:

∆ti+1 = ∆ti

√
nc

ni

with ni the number of iterations for the last convergence, and nc the desired number of
iterations. All other variables are as described above. The next time increment will be taken
as the minimum value calculated from the internal variable control and the iteration control.

As the time step is determined from the previous time step, it remains to define the
initial time step in a sequence. This initial step may be given using two different methods.
1) The default method uses the number of increments in the sequence as defined under the
**sequence command (the *increment sub-command). This method gives the standard
∆t0 = ∆tsequence/# increments. 2) Explicitly enter the first time step with the first_dtime

sub-command described below.
Divergence control is available when the maximum number of allowable iterations is passed

within any of the defined increments. The sub-command *divergence will allow specifying a
dividing factor used to reduce the time step. The maximum number of successive divergences
is also adjustable.

If the increment of all controlled internal variables is less than the desired amount, or if
the convergence is achieved in less than the desired number of iterations, the time step will
be increased by a user defined factor (*security) in order to accelerate the solution.

Syntax:
The following syntax is used to define the automatic time-stepping in a calculation:

Z-set — Non-linear material
& structure analysis suite 3.185

****calcul

***resolution

**automatic time

**automatic_time [type] (var1 val1 [var2 val2...] global iter mandatory)
[*divergence div [times]]

[*security ratio]

[*max_dtime max dtime [max dtime2 . . .]]

[*min_dtime min dtime [min dtime2 . . .]]

[*first_dtime first dtime [first dtime2 . . .]]

CODE DESCRIPTION

standard Automatic time assuming that the loading path is basi-

cally continuous. If mandatory is specified the indicated

incremental value is considered to be mandatory: if the

increment of the specified variable is too large, one consid-

ers that a divergence occured, and the automatic time will

reduce the time step.

by sequence The algorithm is initialized to the user’s increment input for

each sequence; recommended for cyclic loading for example

divergence control Automatic time only to control divergence; the input incre-

ments will be used except when a divergence occurs

*divergence div [times] Divergence control taking a real value for the devising factor
div and an integer for the number of allowable divergences times. The default value for
times is one.

*first dtime first dtime Set the first time step in all sequences with the real value
first dtime. This option is advised only for monotonic or other simple loading paths. A
list of first dtimes may also be given, corresponding to the first dtime of each sequence.
The last is implicitly repeated, if necessary.

*max dtime max dtime Set the maximum allowable time step to the real value max dtime.
In the case of overestimating the number of iterations or change in the internal variables,
this option will limit the acceleration of solution.

*min dtime min dtime Set the minimum time step to the real value min dtime. In the
event where the number of iterations or the change in internal variables are grossly
underestimated, this option will limit the time step to a minimum value. It prevents
extreme reduction of the time step which will effectively limit the calculation from
advancing further.

*security ratio Defines the multiplicative factor used to increase the time step in the
event of good convergence or small changes of the internal variables. The parameter
ratio is a real value specifying the factor to be used.

�
If automatic_time exhibits strange behavior with small or large time steps, try to use

***dimension instructions 3.106.

Example:
A very frequent use of this command follows:

Z-set — Non-linear material
& structure analysis suite 3.186

****calcul

***resolution

**automatic time

**automatic_time global 3

*divergence 2.0 10

*security 1.2

Frequently it is a good idea to keep the allowable iterations small (**sequence *iteration
command), and let the automatic time reduce the step size more readily.

Some other variations to control accuracy based on changes in material variables follow.

**automatic_time evcum 0.001 eel11 0.001 global 5

**automatic_time f 0.01 p 0.01

*divergence 2.0 50

*security 1.2

*max_dtime 0.03

*min_dtime 0.001

Z-set — Non-linear material
& structure analysis suite 3.187

****calcul

***resolution

**init d dof

**init d dof

Description:
This procedure sets the initial increment DOF values for iteration i + 1 as a function of the
previous solution i:

∆DOFi+1 = ratio× ∆ti+1

∆ti
×∆DOFi

The objective of this method is to accelerate convergence during relatively stable loading
paths. The assumption is that the next solution will not vary greatly from the previous one.
This method is therefore dangerous to convergence if the loading changes rapidly, such as a
newly unloaded section of the structure.

Syntax:

**init_d_dof [ratio][sequence]

ratio is a real value acting as a scaling factor, as shown above. The default value is 1.0.

sequence indicates that the initialization is only applied within each sequence, based on
the first solution of that sequence. In absence of this option the initialization is carried
out for the entire calculation, even across sequence boundaries.

Example:

**init_d_dof 0.9 sequence

Z-set — Non-linear material
& structure analysis suite 3.188

****calcul

***resolution

**max divergence

**max divergence

Description:
This procedure allows a given value to be set for the maximum allowable ratio of two successive
convergence ratios. The calculation will be terminated if this critical ratio is exceeded.

Syntax:

**max_divergence value % value is a double

Example:

**max_divergence 1.5

Z-set — Non-linear material
& structure analysis suite 3.189

****calcul

***resolution

**sequence

**sequence
Description:

This command writes the sequences or blocks of time steps for the problem11. Solution
requires specification of discrete times for which the governing equations are to be evaluated.
The program allows an unlimited number of **sequence or **cycles (see next command
page) instances in order to create complex loading histories. There is really no distinction
between the sequence and the cycle commands; the cycle command automatically generates
a number of repeated sequence groups to form cycles.

As discussed in the introduction of ****calcul (page 3.7), the sequences are broken up
into increments which are the most fundamental unit of time stepping.

Syntax:
Sequences are created as necessary according to the sub-options of the **sequence command.
Normally, the sequences are defined by end times or incremental times of the sequences. The
syntax for these definitions is the following:

**sequence [N]

[*algorithm algo1 [algo2, algoN]]

[*increment inc1, inc2, ..., incN]

[*iteration iter1, iter2, ..., iterN]

[*limit_dof vari, vali1,...valin [, varj, valj1,..., valjN]]

[*time time1, time2,..., timeN]

[*dtime dtime1, dtime2,..., dtimeN]

[*ratio [absolu] ratio1, ratio2, ..., ratioN]

The integer value N defines the number of sequences which will be run, even if there are
more defined in the sub-commands. This allows the run-time of a problem to be limited
quickly, without deleting or commenting information which may be useful later on. In the
absence of this value, the number of sequences will be determined based on the number of
time or dtime values input.

All the other options are used for specifying particular parameters which correspond to the
sequences. If the number of values given after an option is less than the number of sequences
of the current block (the last **sequence command), the last value given will be repeated for
all the subsequent sequences. If one or several of the sub commands are absent, the default
value will apply to all the sequences defined.

*algorithm String values substituted for algo1 to algoN are the algorithm solution methods
for each segment of the loading. The values for these methods are summarized:

11Sequences are extensively discussed in the examples manual

Z-set — Non-linear material
& structure analysis suite 3.190

****calcul

***resolution

**sequence

CODE DESCRIPTION

eeeeee Newton “elastic” method. Matrix is not re-calculated during

iterations

EEEEEE Linear method. No iterations, matrix calculated only once

(once after time step or Newmark coefficients changes in dy-

namics). The computation of internal forces is made through

the K.U multiplication which is much faster than the classical

element integration procedure. Only nodal fields are post-

treated, no element fields are available. This can be useful to

treat linear dynamics problems in a very fast way.

p1p1p1 Modified Newton algorithm with the matrix calculated and

inverted the first and second iterations

p1p2p2 Modified Newton algorithm with the matrix calculated and

inverted the first, second, and third iterations

p1p2p3 Newton-Raphson algorithm where the matrix is always up-

dated during iterations

*increment The integer values inc1, inc2, ..., incN are used to define the number of
increments in corresponding sequences. In the absence of this option, all sequences are
calculated in a single loading increment.

*iteration iter1, ..., iterN. Integer values used to limit the maximum number of iterations
in a given increment, valid during a sequence. The default number of iterations is
10. These values may be used to adjust the divergence control, or limit the CPU
consumption of a poorly converging problem.

*limit dof vari, vali1,...valin, ... This option takes a DOF character name (U1, U2, etc)
and a list of real values corresponding the given segments. Any number of DOF name /
list of limiting values may be input sequentially to put limits on the different DOFs of
the problem. Real numbers input are limiting values for any iteration of the degree of
freedom. In the course of iterations, we will have available ∆ui at iteration i + 1 from
the solution of the linear system, dui = (Ki)

−1 Ri. In place of the standard updating of
the DOF values, ∆ui+1 = ∆ui+dui we have ∆ui+1 = ∆ui+βdui where β is a limiting
factor:

β = min

(
limitation value

maxDOF (dui)
, β

)
with 0 < β < 1.

This option allows the calculation to pass points where the algorithm would predict
instability, at the cost of increased number of iterations. Excessive trial delta values in
the DOFs may occur when the problem tangent matrix displays softening behavior.

*time time1, time2,..., timeN specifies the absolute times at the end of the sequences. There
are as many values as the number of sequences. The first sequence of the problem is at

Z-set — Non-linear material
& structure analysis suite 3.191

****calcul

***resolution

**sequence

t = 0, or the last time given in the previous **sequence command. This initial value
must be less than the first time time1 given here. In the absence of a *time option, the
times will be assigned to the sequence numbers.

*dtime dtime1, dtime2,..., dtimeN specifies the increment of time taken over a sequence.
This method of specifying the sequence times is useful if a “time shiftable” block of
sequences is desired. An example is a block of loadings to be subjected to different
pre-loadings, or loading after a series of cycles, where additional computations would
be necessary to assure that the times are well-posed. Options *dtime and *time are
mutually exclusive.

*ratio [absolu] ratio1, ratio2, ..., ratioN This option is for specifying the maximum
global residual for convergence in a sequence. The real values ratio1, etc correspond to
the sequences defined. A single given value will be repeated for all the sequences.

The residual calculation will be calculated according to the following formula:

ratio =

√∑
iddl(Rext

iddl−R
int
iddl)

2

√∑
iddlR

ext2
×0.01 ratio

ratio =
√∑

iddl

(
Rext

iddl −Rint
iddl

)2
ratio absolu

where the option absolu indicates non-normalized ratio calculation.

Example:

**sequence

*time 1.0 5.0

*increment 10

*iteration 20

*ratio absolu 1.0

*algorithm p1p2p3

*limit_dof U1 .1 .1 U2 .02 .03

%

% from ab429.inp making 3 sequences

%

**sequence

*time 3. 33. 50.

*ratio 1. 3. 3.

*iteration 50 30 30

*increment 10 15 34

*algorithm p1p2p3

*limit_dof

U1 0.2 0.5 0.5

U2 0.2 0.5 0.5

PR 10.0 10.0 10.0

Z-set — Non-linear material
& structure analysis suite 3.192

****calcul

***resolution

**cycles

**cycles

Description:
The cycles option is essentially the same as the **sequence option except that it repeats the
block of sequences a given number of times. Normally, use of the **cycles option will be
employed after a series of pre-loading sequences, in order to attain the initial loading state
of the cycles. Therefore, cyclic loadings will usually require a **sequence definition for the
pre-load, followed by a **cycles definition for the cycles themselves. Unless the end segment
of the cycles will return to zero loading, additional **segment definitions may be given to
relax the structure to an unloaded state.

An example loading is a pre-load in tension, followed by tension-torsion cycles, and finally
a relaxation of the initial tensile load. Many more cases may be imagined.

As the calculation time scale is the principal measure of the solution, it is important to
understand the method of time scale construction from a cycles definition. The times given for
this option are always relative to the beginning of the cycle. This defines a local cycle-based
time scale, which may be repeated.

Syntax:
The syntax for cyclic loading is the following:

**cycles [N]

[*algorithm algo1 [algo2, algoN]]

[*increment inc1, inc2, ..., incN]

[*iteration iter1, iter2, ..., iterN]

[*limit_dof vari, vali1,...valin [, varj, valj1,..., valjN]]

[*time time1, time2,..., timeN]

[*dtime dtime1, dtime2,..., dtimeN]

[*ratio [absolu] ratio1, ratio2, ..., ratioN]

the integer N is the number of cycles to be created.
Except for the time scale alteration for the cyclic sequences defined with the *time or

*dtime options, all sub-commands for this command are equivalent to the **sequence com-
mand.

Example:
An example loading gives 5 cycles with the waveform 10s-300s-10s after a pre-load of 1s.

**sequence

*time 1.

**cycles 5

*dtime 10. 300. 10.

*increment 5 10 1

*algorithm p1p2p3

This example assumes the first one second loading segment will be a linear solution. The
first segment of the first cycle (from 1 second to 11 seconds on the “global” clock) may be a
loading with non-linear behavior, so 5 increments are given. The following rest time has 10
increments, also assuming non-linear behavior. The final segment from times 311 seconds to
321 seconds is assumed linear and will be solved in one increment. The same increments will

Z-set — Non-linear material
& structure analysis suite 3.193

****calcul

***resolution

**cycles

then be repeated 4 more times. A corresponding loading waveform is given in the ***table

command.

Z-set — Non-linear material
& structure analysis suite 3.194

****calcul

***resolution

**skip cycles

**skip cycles

Description:
The skip cycles command is used for cyclic calculations to extrapolate the problem variables
and thereby reduce the number of cycles actually calculated. Because there can be many time
steps per cycle, this command has the possiblity of greatly reducing the calculation time.

Syntax:

**skip_cycles [type]

*precision val
*during_cycles cyc-st cyc-end
*use_sequence seq-num
*extrapolate_from cyc1 cyc2 cyc3
*check_with_component var-name

Example:

For example we give a viscoplastic problem with 300 cycles and several sequences per
cycle. The option *use_sequence was used to specify the beginning of sequence 1 because
the material response is pretty much elastic there throughout the cycling. The response
changes rapidly before cycle 4, so *during_cycles was used to start the cycle skip after that
point.

**cycles 300

*time 15.0 30. 40.0 50.0

*increment 20 4 5 4

*ratio absolu 1.e-3

*algorithm p1p2p3

**skip_cycles polynomial_extrapolation

*precision 0.2

*trim 0.8

*order 2

*error_skip 2

*during_cycles 4 290

*use_sequence 1

*extrapolate_from 1 2 3

*check_with_component evcum

Z-set — Non-linear material
& structure analysis suite 3.195

****calcul

***resolution

**use lumped mass

**use lumped mass

Description:
This procedure replaces the mass matrix by the lumped one currently used with explicit algo-
rithm (see ****calcul mechanical explicit in 3.15). Only available for ****calcul dynamics.

Z-set — Non-linear material
& structure analysis suite 3.196

****calcul

***restart

***restart

Description:
Manages the restart of an interrupted or unfinished calculation. The program automatically
saves a restart file (filename prob.rst) at the end of each increment. If special restart saves are
desired at different stages of the calculation, use the ***make_restart_file option. Saving
a calculation’s .rst file may be used to repeatedly calculate a second part of a calculation
without repeating the initial portion. The option may also be used to change the parameters
of the calculation at intermediate points in the time-scale, although with significant user work.

Syntax:

***restart

[**file name-of-restart-file]

The default restart file name is prob.rst ; you may specify a different name with the
**file option.

Drastically changing the boundary conditions or other parameters in the .inp file and
re-starting the calculation may lead to poor results.

Z-set — Non-linear material
& structure analysis suite 3.197

****calcul

***auto restart

***auto restart

Description:
This option allows automatic restart of a problem, if a restart file exists. The only difference
with ***restart is that no error message is output if no restart file is available.

Z-set — Non-linear material
& structure analysis suite 3.198

****calcul

***table

***table

Description:
The procedure ***table indicates a loading table definition in time. The table will be avail-
able in the other commands of the .inp file such as the boundary conditions or the external
parameter definitions. Loading tables are currently only defined as a series of time-magnitude
points which are linearly interpolated to intermediate times.

The tables are named with arbitrary, user-defined character strings which are used in the
syntax of other commands to indicate which table to use. There are no conditions on the
number or size of the tables.

Syntax:
Loading tables are assembled through the use of the following sub-commands:

***table

**name name
*time t1 . . . tn
*value v1 . . . vn
**cycle name tini tend
*time t1 . . . tn
*value v1 . . . vn

**function name FUNCTION

**file name file name ctime cvalue

**name Specifies that a simple table is to be created with name as given directly following
the **name keyword. A table defined as such is assembled with the *time and *value

options.

*time indicates that a list of real values will follow giving the individual time points
of the table. These time values are in absolute time measured from the beginning
of the problem. The current version of the code requires in most applications that
the table be able to give a value for all valid times in the problem. This is noted
to begin with the initial time t = 0. Most tables will therefore be defined starting
with this initial point.

*dtime This option serves the same function as the *time command, but is defined
in incremental form. The option is useful for complex loadings where it is easier
to think in incremental form, or as the only way to currently model step loading
(using segments of ∆t = 0).

*value This option indicates that a series of real numbers will be given to define the
table values. It is necessary that there be exactly one value for each time specified
with the *time command. As the time definitions are given from the beginning of
the problem, there must be a corresponding initial value for time t = 0. This value
will normally be zero in the case of boundary condition loading, as the problem
may not begin in a pre-deformed state through standard boundary conditions (use
a restart procedure with the pre-deformed structure stored in the restart file). If
one table is succeeded by another, it is necessary to ensure the continuity from one
table to another.

Z-set — Non-linear material
& structure analysis suite 3.199

****calcul

***table

**cycle name tini tend In order to generate cyclic loadings it is convenient to simply specify
a load cycle to be repeated a number of times. This option does exactly that with the
initial time for the cycles given by tini (a real value). The cycles will continue repeated
until the time tend (real) regardless if that time is at the end point or an intermediate
point in the cycle. The cycle is defined as a simple table above using the *time and
*value options, only that the time will be in a local cycle scale. The start of the cycle
(first at time tini) is at the local time zero. The zero time point must therefore always be
given for the cycle table format. In contrast with the standard table, the corresponding
initial value is not usually zero, as some pre-loading may have been applied before the
cycles begin. This command is examined more fully in the examples below.

**function This allows to generate tables defined by functions depending on time. name
specifies the table name followed by a FUNCTION object. The variable time MUST be
the only argument of the function.

**file This allows to generate tables defined by a file (column format). name specifies the
table name. file name specifies the file name. ctime specifies the column of file name
representing the time and cvalue the column of file name representing the table value
(the first column is numbered 1).

Example:

1. Suppose that a U2 displacement is to be applied to the top surface of a structure. This
surface will have a node set defined by the user in the geometry description with the name
top. The loading profile is to be:

at t = 1, u = 10.
at t = 5, u = −10.
at t > 5, u = −10.

On a face set named inter a pressure is also to be applied. The pressure value will be
zero until t = 1, after which there is a ramp loading in the pressure until t = 7 at which point
the pressure is 100.

The loading sequences will correspond to the points of load change:

**sequence

*time 1. 5. 7.

Declaration of the displacement and pressure boundary conditions are written:

***bc

**impose_nodal_dof

haut U2 1. tab1

**pressure inter 100. tab2

Note the two different table names tab1 and tab2 because the loading waveforms are different.
The table definitions may be written as:

Z-set — Non-linear material
& structure analysis suite 3.200

****calcul

***table

***table

**name tab1

*time 0. 1. 5. 7.

*value 0. 10. -10. -10.

**name tab2

*time 0. 1. 7.

*value 0. 0. 1.

2. Cyclic loading is given as a second example. This case represents the calculation of a
structure under a pre-loaded pressure of 200 MPa followed by a cycling of the pressure about
the mean value of 200 MPa with a cyclic magnitude of 100 MPa. After 10 cycles the pressure
is returned to zero to observe the residual stress field.

***resolution

**sequence

*time 120.

*increment 5

**cycles 10

*dtime 75. 75. 75. 75.

*increment 10

*algorithm p1p2p3

**sequence

*dtime 20.

*increment 5

***bc

**pressure

top 1.0 tab1 cycs tab2

***table

**name tab1

*time 0.0 120.

*value 0.0 200.

**cycle cycs 120. 3120.

*time 0.0 75. 150. 225. 300.

*value 200.0 250. 200. 150. 200.

**name tab2

*time 3120.0 3140.

*value 200.0 0.

Z-set — Non-linear material
& structure analysis suite 3.201

****calcul

***table

 0

 40

 80

 120

 160

 200

 240

 280

 0 4 8 12 16 20 24 28 32
 Time (x 100s)

 1

Pressure

Z-set — Non-linear material
& structure analysis suite 3.202

****calcul

***function

***function

Description:
This command applies as ***table in the preceeding section, but defines the magnitude as
a function of time (see page 5.2 for a discussion of functions).

The ***function command can only be defined in terms of the variable time.

Syntax:
The syntax is the following:

***function name func def;

Note that semi-colon is required. The name has the same significance as in the ***table
command. Each function requires its own ***function declaration.

Example:

***function xtab cos(time);

***function ytab sin(time);

***function funny time + 3.0*exp(-8.2*time);

***function constant 1.0;

The last example will give a warning, but works.

Z-set — Non-linear material
& structure analysis suite 3.203

****calcul

***specials

***specials

Description:
The command ***specials allows one to specify certain special boundary conditions. Cur-
rently, the command may only be used to declare mesh conditions which exist in the mesh,
and is thus could be thought of as a “mesh modifier12.”

Syntax:

***specials

[**mesh]

[*specify]

**mesh is used to specify special conditions which exist in the mesh.

*specify Introduces the specified parameters to the mesh. The only option currently
available for this command is X0 Y0 for E2 5 which fixes the origin of moments
applied to 2.5D elements (generalized plane strain). The moments are applied
throughout the thickness of an elset. The syntax requires an element set name
follow the keyword, and also real values for the center on the axes 1 and 2. This
option is associated to the BC command **impose elset dof.

Example:

***specials

**mesh

*specify X0_Y0_for_E2_5 eprouvette 1. 1.

12I really don’t understand what this is - rf

Z-set — Non-linear material
& structure analysis suite 3.204

****calcul

***xfem crack mode

***xfem crack mode

Description:
This command allows the use of XFEM enriched elements, in order to model the influence
of a discontinuity (crack) on mechanical fields, without the need to explicitely introduce this
crack in the FE mesh. Note that the graphical interactive Zxfem script can be used to handle
Xfem models, and automatically generate input data for this command.

In this context the crack is defined by 2 levelsets, φ (signed distance to the crack
plane) and ψ (signed distance to the front of the projection on the crack plane). The
**compute_predefined_levelset mesher command can be used to generate such levelsets
for basic crack geometries (see page 2.31. Let I be a set containing all nodes in the FE mesh,
we then define 2 subsets J and K of I (see figure below):

• J ⊂ I correspond to nodes in elements E completely cut by by the crack (φ is changing
sign on E, but sign of φ is constant),

• K ⊂ I correspond to nodes in elements that include the crack front (both φ and psi are
changing sign on E).

J set: nodes ∈ elements cut by the crack
K set: nodes ∈ elements containing the crack front

Enriched shape functions are then defined in the following way:

uE(x) =
∑
i∈I∩E

ui φi(x) +
∑
i∈L∩E

ai φi(x) Hi(x) +
∑

i∈K∩E
φi(x)

 4∑
j=1

bji F
j
i (x)


where:

• φi(x) denote the shape functions of classical (ie. not enriched) finite elements and ui
the conventional displacement degrees of freedom (i = 1, NE , where NE is the number
of nodes of element E)

• Hi(x) are shape functions taking a value of 1 on one side of the crack, and −1 on the
other. They are used to model the discontinuity of displacement fields across the crack.
The corresponding ai degrees of freedom are called Xh in results files.

• the F ji (x) (j = 1, ..., 4) shape functions account for classical elastic analytical solutions
around a crack tip:

(F 1, F 2, F 3, F 4) =

Z-set — Non-linear material
& structure analysis suite 3.205

****calcul

***xfem crack mode

(√
(r) sin

(
θ

2

)
,
√

(r) cos

(
θ

2

)
,
√

(r) sin

(
θ

2

)
sin(θ) ,

√
(r) cos

(
θ

2

)
sin(θ)

)
where (r, θ) are polar coordinates defined around the crack front as defined on the next
figure:

x

xp

x∗

crack front

θ

r crack plane

xp : projection of x on the crack plane

x∗ : projection of xp on the crack front

φ

ψ

• the bji (j = 1; 4) degrees of freedom associated to the F ji shape functions will be called
Xa, Xb, Xc, Xd in results files.

Note that the basic enrichment scheme described above is the so-called topological enrich-
ment mode. A major problem associated with this mode, is that the influence of the refined
shape functions used for nodes in the K set (

√
r shape functions), is decreasing when mesh

size near the crack front is refined, which has a negative effect on the rate of convergence. If
this is indeed a problem, geometrical enrichment can be used, where all nodes within a target
user-defined distance of the crack front are automatically added to the K set, and are given
full
√
r type of enrichment.

In the current Zébulon release (8.5), some restrictions on the use of this method still exist,
that will be removed in the next versions:

• only 3D linear elements are currently officially supported,

• extensive capabilities do exist to use this scheme within the context of crack propagation
(with automatic remeshing if needed), but those options are still under developemnt and
will not be addressed here.

Syntax:
The syntax is as follows:

[***xfem_gtheta]

***xfem_crack_mode

[**elset ename]

**discontinuity 3d_levelset

(no_option |

(

[*psi_file fpsi]
[*phi_file fphi]
[*fit_to_vertice eps]

Z-set — Non-linear material
& structure analysis suite 3.206

****calcul

***xfem crack mode

)

)

[**geometrical_radius rad]

[*set_mpc]

where:

• keyword ***xfem_gtheta is mandatory for connection with the ***compute_G_by_gth

command (computation of 3D stress intensity factors by means of the G − θ method
3.86).

• optional command **elset ename may be used to specify the name of an elset contain-
ing candidate elements of the enrichment process. By default, all elements in the FE
mesh are concerned, and are indeed enriched when cut by the crack or located within
the geometrical radius definition.

• commands *phi_file, *psi_file allow to specify the name of ASCII files defining the
φ, ψ levelsets on nodes of the FE mesh (see 2.31 for the mesher command used to create
those files). Default names for those files are ”phi.dat”, ”psi.dat”.

• the optional command *fit_to_vertices may be used to define the critical distance
value eps, that controls if the crack does cut an element (ie. the element needs to be
splitted), or simply pass through one of its corner nodes (vertice). Note that eps is
a relative value, scaled against the size of the element edge cut by the discontinuity
(default value is eps=0.05, ie. 5% of the length of the corresponding element edge).

• command **geometrical_radius specifies the size rad of the domain used for geomet-
rical enrichment: int his case, all elements with nodes within a distance of less than rad
of the crack front will be enriched with

√
r shape functions. This option enhance the

rate of convergence of the xfem method (mesh size sensitivity), but should be used with
caution since the size of the problem is strongly increased (12 additional dof by nodes
concerned in 3D). Default mode is topological enrichment only (rad=0).

• when geometrical enichment is activated, the optional *set_mpc may be used to auto-
matically add linear relationship between the geometrically enriched zone and the rest
of the mesh, in order to insure continuity of displacements, and improve the rate of
convergence.

Example:

% Basic example : calculation with xfem enriched elements

****calcul

% activation of the Z8 output format mandatory

% for Zmaster handling of XFEM results

***global_parameter

Solver.OutputFormat Z8

Zmaster.OutputFormat Z8

...

% levelset definition in default phi.dat, psi.dat files

Z-set — Non-linear material
& structure analysis suite 3.207

****calcul

***xfem crack mode

***xfem_crack_mode

**discontinuity 3d_levelset no_option

...

% special xfem output requests allowed in the Z8

% output mode

***output

**xfem_split_integ

**xfem_split_node

**xfem_split_contour

...

****return

Example:

% use with the g-theta module

****calcul

...

% mandatory to link xfem with gtheta

***xfem_gtheta

***xfem_crack_mode

**discontinuity 3d_levelset

...

% gtheta commands for SIF calculation

% (note the **xfem keyword)

***compute_G_by_gth gtheta_a

**xfem

**behavior paris

...

****return

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300

sig22 map:1.00000 time:1 min:-619.756 max:8037.49

Example of Zmaster capabilities to handle XFEM results and draw the solution on a cracked
mesh as if the discontinuity was explicitely introduced in the model

Z-set — Non-linear material
& structure analysis suite 3.208

Chapter 4

Post calculations

Z-set — Non-linear material
& structure analysis suite 4.1

Post intro

Introduction to Post Computations

This mode of operation is used to apply post calculations on results obtained by the finite
element method, and with simulations. Because the data input for post processing are in
the calculation results files, the file name resulting from the post-processor are constructed
from the original name, by adding p to the different file name extensions. For example,
the treatment of integration points in the problem problem.integ will produce a file named
problem.integp. A file problem.utp is automatically generated in order to allow graphical
visualization of the new variables.

All of the results (calculation and post-calculations) are simultaneously available in the
Zmaster graphical program, and the Zmaster batch program.

.inp .mat .geof

.ut .integ .ctnod

.ctmat .node

.ctele

.utp .integp .ctnodp

.ctmatp .ctelep

.post

Analysis

Post−processor

Graphical
Output

Two basic types of operations are defined:

• A post treatment so-called local which is used to evaluate a criterion at nodal or Gauss
point locations throughout the mesh, or in a part of it. The calculation is based only
on the data contained at the point(s) of concern.

• Post calculations which are global in that they are used to evaluate a criterion over the
whole structure, or in a sub-part of it, at a given instant. The calculation therefore
normally accounts for data distributed in space.

Z-set — Non-linear material
& structure analysis suite 4.2

Post intro

maps
(stored outputs)

"Local" post processing

"Global" post processing

Gauss points, nodes, etc

Existing variables,
Post created variables

Z-set — Non-linear material
& structure analysis suite 4.3

Post intro

Local post-processing:

The local post computations is used for example to predict the component life of a structure
using simple monotonic loading (e.g. Rice-Tracey models), under creep or fatigue (low or high
cycle models). It can also used used to determine some derived data relative to the local
history at each point, such as the maximum stress temperature or temperature during the
loading history.

According to the users choice, the computation will be made at integration (Gauss) points
(from the file problem.integ) or at nodal points from data originally saved at the nodal points
(files problem.node and problem.ctnod).

The local post treatments give the user the ability to make connections between Z-set
computations and other codes as well. This can be achieved for example using the format

command to create formatted ASCII text output, or using and external program or script
to calculate a particular user post computation. Note also that the post-processor is fully
extensible using the Z-set plug-ins.

Global post-processing:

Global post processing is applied when, for example, one wishes to calculate the mean values
of a variable in the entire structure. The majority of the time, the structure’s geometry must
be known, and an integration volume is defined. Another example is a Weibull criterion for
brittle fracture prediction.

The majority of global post computations produce output which is reduced to a scalar
value for each time step of the calculation. These values are stored with some description in
an ASCII file problem.post. Nevertheless, some of the global post processors produce local
results (all the time using a non-local algorithm), which will be stored in the appropriate file
(node or integration values).

General rules:

For the two types of post-calculation, the user defines the context operation: groups of el-
ements, of nodes, or of Gauss points on which to calculate. The output numbers may also
be taken into account. The context can be redefines during the calculation. It is important
to remember that a given computation or criterion will be applied to the last context which
was defined. The individual computations will be applied one after another in the order of
appearance in the input file. One can alternate arbitrarily local and global post computations.

The variables for which the post computation is applied can be:

• FEA output: their names appear in the file problem.ut

• Post-computation output calculated in the course of the same execution., That is, once
a post computation is applied, the new variables generated by that application are
henceforth added to the list of available variables.

Recursive computations are available using the newly generated variables in post-
computations. An example would be to calculate an equivalent strain as the combination
of strains at each point, and then calculate the maximum of these equivalent strains. The
global results (stored in the file problem.post) are not however re-usable.

Z-set — Non-linear material
& structure analysis suite 4.4

Post intro

The data source:

In version 8.3 and greater Z-post has the capability to run off of different data source formats
than the default Zebulon solver files. Notably there is the possibility to import from ABAQUS,
ANSYS Z-sim and arbitrary ASCII files. With this mesher commands can be applied to the
results files as necessary to allow new selections to be available. The commands to do that
import are described in the section for ***data_source on page 4.14. An example showing
typical use follows.

****post_processing

***data_source rst % load the ansys results

**open t-base_model_fillet.rst % and write a native

**write_geof % mesh file (GEOF format)

**elset LOOK % with some set generation

*elements

2205 2163 311 325 339 353 381 367 395 409 423 437 479 521

**nset edge1

*nodes

2396 2397 1 2394 2395 2393 2392 2390 2391 2389 2388 2386 2387

2385 2384 2382 2383 2381 2380 2379 2373

**bset edge1

*use_nset edge1

*use_dimension 2

***precision 3

%--

***local_post_processing % here we copy the displacements

**output_number 1-999 % so the post generated views

**file node % can be deformed

**output_to_node

**nset ALL_NODE

**process copy *list_var U1 U2 U3

***local_post_processing %

**output_number 1-999 % Ansys results are contours

**file ctele **elset ALL_ELEMENT % by element (CTELE)

**material_file post1.inp % where to find coefs.. (here we

% use the same physical file)

**process transform_frame

*tensor_variables sig

*output_variables sigm % "sigma-material"

*use_element_rotations

***return

Z-set — Non-linear material
& structure analysis suite 4.5

Post intro

The data output:

In version 8.3.3 and greater Z-post has the capability to output to a number of different output
formats, with multiple selections of localized output formats from your posts.

In every case, the standard “-p” files will also be written because these files are used
for access to intermediate variables in the course of several posts relying on each other. An
example use of this post processing with an ansys input and abaqus output follows:

****post_processing

***data_source rst % load ansys rst format

**open ansys_model.rst % in the file ansys_model.rst

***data_output odb

*problem_name abaqus_post_results % makes abaqus_post_results.odb file

*elset outer_surface % make odb of this elset only

***local_post_processing

...

With the release of Z 8.3.6 in March 2006 the data outputting also consist of a format for
zebulon files. This output format has following additional features which may be preferable
in some cases:

• the data is written to disk only in a single large write, without seek calls which can
cause network latency.

• the output can be specified to a list of elsets, from which a reduced mesh is given. this
data output can therefore be used to reduce storage size.

• can be used to write to a “zebulon” calculation format (non-p suffixed files) and therefore
can form the basis of a subsequent series of post calculations.

Z-set — Non-linear material
& structure analysis suite 4.6

Post intro

Interface with Zmaster:

The post calculations has been embedded in Zmaster in addition to their use by generating
additional output files. That is, the post process computations can be run directly on the
selected data in Zmaster. After adding a post computation in the Zmaster environment, the
.mast file needs to be re-saved.

Material coefficients:

Many of the post computation models use coefficients to specify parameters which vary for
different materials. There are 2 ways of specifying these coefficients, each of which may be
more convenient for different situations.

The first method is to have the material data separated from the process definition. This
allows re-use of the coefficients for multiple computations by creating a repository of material
values. An example input with two creep entries follows.

**material_file creep.inp

**process creep

*var sig

**process creep

*var sig

*express_life_as time

Both creep process computations would then use the creep entry in a material file creep.inp:

***post_processing_data

**process creep

r 5.

A 1500.

S0 0.

***return

Another method (new to Z8.0) is to simply put the coefficients in-line with the process com-
mand. This is obviously easier for “one-off” post processing:

**process creep

*var sig

*model_coef

r 5.0

A 1500.0

S0 0.0

Z-set — Non-linear material
& structure analysis suite 4.7

Post intro

Pointers and stacked post computations:

Like all of the Z-set packages, the post processing software is build on objects which perform
specific tasks. In the post case however there are a large number of cases where certain
calculations such as a thermo-mechanical fatigue analysis employing plastic range, oxidation,
and creep damages will need to re-use other computations which themselves can act as stand-
alone computations. This is to say, very often a post computation will require pointers to
other post input files defining those additional procedures. The following is a detailed example
of such input (from the test lcf.inp in Post test/INP

The analysis is defined by the “primary” section, which will be the first instance of
****post processing in the input file (or N -th instance in the case of an -N input switch).

****post_processing

***local_post_processing

**file integ

**elset ALL_ELEMENT

**material_file ../MAT/test_simple

**process LCF % LCF auto creates a stress range making NC_S NF_S

*mode NLC_ONERA % creates NR_NLC_ONERA

*fatigue fatigue_S 2 % this means use fatigue_S post

*creep creep 2 % and creep post in post .inp file #2

**material_file ../MAT/test_with_a

**process LCF % there is already NC_S NF_S, new are NC_S_n1 NF_S_n1

*mode NLC_ONERA % creates NR_NLC_ONERA_n1

*fatigue fatigue_S 3 % look in 3rd ****post_processing segment

*creep creep 3

**material_file ../MAT/test_simple_norm

**process LCF % now NC_S_n2 NF_S_n2

*mode NLC_ONERA % NR_NLC_ONERA_n2

*fatigue fatigue_S 4

*creep creep 4

**material_file ../MAT/test_with_a_norm

**process LCF % and finally NC_S_n3 NF_S_n3

*mode NLC_ONERA % NR_NLC_ONERA_n2

*fatigue fatigue_S 5

*creep creep 5

***global_post_processing % average values are taken for the validation

**output_number 1 % purposes. One can look at a field in Zmaster

**process average

*list_var NC_S NF_S NF_S_n1 NF_S_n2 NF_S_n3

**process average

*list_var NR_NLC_ONERA NR_NLC_ONERA_n1 NR_NLC_ONERA_n2 NR_NLC_ONERA_n3

****return

Note that the active material file is being switched throughout the input structure, and
each calculation uses a pointer for the *fatigue and *creep parts. That is, the LCF model is a
method of combining fatigue and creep damages (with for example the nonlinear combination

Z-set — Non-linear material
& structure analysis suite 4.8

Post intro

method of ONERA), and the ways that those damages are calculated is defined elsewhere. In
this sense we are following the “object-oriented” sense found in all of Z-set, and the damages
are being treated as abstractions. They become concrete through the additional objects
instanced in the different pointed to data files.

For this example, the following sections are included in the same input file, after the above
“primary” section.

%section 2

test_simple

****post_processing

**process fatigue_S

*var sig

*mode simple

**process creep

*var sig

****return

%section 3

test_with_a

****post_processing

**process fatigue_S

*var sig

*mode with_a

**process creep

*var sig

****return

%section 4

test_simple_norm

****post_processing

**process fatigue_S

*var sig

*mode simple

*normalized_coeff

**process creep

*var sig

****return

%section 5

test_with_a_norm

****post_processing

**process fatigue_S

*mode with_a

*var sig

*normalized_coeff

**process creep

*var sig

****return

. . . continued

Z-set — Non-linear material
& structure analysis suite 4.9

Post intro

For the material files, there will be a succession of **process sections with the types
corresponding to the types of calculation in the input file. For example, in the file
../MAT/test simple referenced above we have:

%

% fatigue coefficients for the formula without a, and

% non normed coefficients

%

***post_processing_data

**process fatigue_S % coefficients relating to the

M 14782.065 % fatigue_S defined in %section 2

beta 2.5

sigma_l 40.5

sigma_u 170.

b1 0.0003

b2 0.0003

**process creep % coefficients relating to

A 452. % creep defined in %section 2

S0 0.

r 10.

k 30.

**process LCF % coefficients controlling the LCF

a 0.1 % from section 1, mode NLC_ONERA

k 30.

beta 2.5

beta 2.5

***return

In the following LCF sections, there is a similar coefficient file with similar structure. These
different files get ready because of the sequence of **material file options swapping the
effective material file name as the main input is read.

Z-set — Non-linear material
& structure analysis suite 4.10

****post processing

****post processing

Description:
This command marks the start of an input section for the post processor. More than one
section of this type can be in the same input file problem.inp. By default, it is the first
section which is executed, and commands are read until the next command which begins with
4 asterisks.

The execution command is (see options for Zrun in zman zmaster):

Zrun -pp prob

In oder to execute other post processing sections in the same file, use the -N option. For
example:

Zrun -N 3 -pp prob

will execute the third section of ****post_processing in the file prob.inp.

Syntax:
A post processing file will generally include *** star commands which adjust the oper-
ation of the post computations, and different sections of***local post processing and
***global post processing sections defining the operations to be performed.

****post_processing

***precision num
***data_source source-type
***data_output output-type
***global_parameter

***suppress_p_on_post_files

***post_file_prefix prefix
***local_post_processing

...

***global_post_processing

...

****return

Commands which are essentially flags or adjustments to the ****post_processing process
follow:

***global parameter After this option one can include global parameter statements as
if they were in a zsetrc file. Please see the Z-set/Release Notes manual for more
information uder the Reference/Adjustable parameters section.

***mesh This option is used to re-map element types in the mesh to a different (post-
processable) type. The command takes a series of elset-name and elem-type pairs to do
the mapping.

***post file prefix used to set what the output files should be named as. This option
makes the output look like another problem from the original input problem.

***precision set the precision for formatted output of real values.

Z-set — Non-linear material
& structure analysis suite 4.11

****post processing

***suppress p on post files this option indicates that the post data files should not
have a suffix -p in the set of files used. This option can be used to stack multiple post
computations together when combined with the ***post file prefix command. One
can also use the ***data output command to a similar effect.

The following additional commands will often be used in multiple instances, and are all
discussed in their own documentation sections. The local and post processing commands
follow other *** options because they both have many sub-options for all the computation
types.

***data source allows the user to ask the post-processor to read its input data from one
of many different source formats (see documentation in following sections).

***data output more than one instance of this option allows outputting results to different
formats.

***global post processing Start a sequence of parameters and commands defining the
type of global post treatment to be applied.

***local post processing Start a sequence of parameters and commands defining the
type of local post treatment to be applied.

Z-set — Non-linear material
& structure analysis suite 4.12

****post processing

Example:
A complete post processing file follows to show the basic structure of the input options all
together.

****post_processing

***precision 6

***local_post_processing

**file integ

**material_file creep.inp

**elset ALL_ELEMENT

**output_number 1-100

**process mises

*var sig

**process eigen2

*var sig

**process trace

*var sig

***global_post_processing

**process average

*list_var sigmises sigp1 sigp2 sigp3 sigii

***local_post_processing

**output_number 1-100

**process creep

*var sig

**process creep

*var sig

*express_life_as time

***global_post_processing

**output_number 1

**process average

*list_var NC_S TC_S

****return

Z-set — Non-linear material
& structure analysis suite 4.13

****post processing

***data source

***data source

Description:
This procedure is used to set the source of data for post processing. The selection should
come before any other ***-level commands.

Syntax:

***data_source type
[**open file]

...

possible mesher commands

The following data source types are currently available.

CODE DESCRIPTION

Z7 standard Zebulon results for versions up to 8.3

d3plot LS-DYNA binary format

fil ABAQUS .fil file format (unix or win32 binary)

fin ABAQUS .fin ASCII file format

fin ABAQUS .odb database format (use -odb switch when

launching Zrun)

ideas I-DEAS format

neu FEMAP neutral format

odb Abaqus ODB database (run with -odb switch)

rst ANSYS .rst file (unix or win32 binary)

sim Z-set simulator format

t16 MARC t16 results format

ascii ASCII file input

When using the ***data source option one gets the chance to add additional meshing op-
erations before the post processing begins. A particularly useful application of this is to add
node or element sets which can then be used to specify the location for post processing.

Note:
For ABAQUS FIL formats we recommend using the POSITION=AVERAGED AT NODES *EL FILE

option. There are some limitations still with the fil reader. Please submit a results file which
is giving trouble. As of 8.3.3 the ODB format is much more robust and the preferred method.
The ODB format is completely implemented for all node/element node/integration point data
formats.

Note:
When using the ***data source option the post processing will generally pass silently if a
requested field variable is available in the results database, but not with the specified location

Z-set — Non-linear material
& structure analysis suite 4.14

****post processing

***data source

(e.g. element nodes ctele, integration points integ, etc). In those cases the data used will
most likely be null (in some instances an automatic interpolation or extrapolation is used).

Example:
A typical example follows. For import examples there are numerous .pst files in the Z-mat

test directory and the Zansys directory. Also for Zebulon, Z-sim, and ASCII data sources
look in the Post_test directory.

****post_processing

***data_source Z7

**open plast3_util

***precision 6

***global_post_processing

**file node

**output_number 1-999

**nset ALL_NODE

**process curve plast3_util.test

*precision 3

*node look U2

*nset press RU2

*node look eto22 sig22 epcum

****return

. . . continued

Z-set — Non-linear material
& structure analysis suite 4.15

****post processing

***data source

Example:
Output from Z-sim or even ASCII files can be used for post processing (even with 1D data).
An example of of loading the binary results from the simulator follows:

****post_processing

***data_source simulator

**dimension 2 % sets the pb dimension

**file_name sim_pb % data discribed in sim_pb.uti

***local_post_processing

**file integ % sim data is always integ

**elset ALL_ELEMENT % always need a location

**process format

*file sig.txt

*list_var sig11 sig22 sig33 sig12

****return

An example load from ascii file follows:

****post_processing

***data_source ascii

**dimension 2

**file_name result.dat

***local_post_processing

**file integ

**elset ALL_ELEMENT

**process format

*file sig.txt

*list_var sig11 sig22 sig33 sig12

****return

In this case, the post-processor expects result.dat to be an ascii file in column order con-
taining a first line which describes the contents of all columns. This file could contain, for
instance:

time sig11 sig22 sig33 sig12

0. 0. 0. 0. 0.

10. 0. 112. 0. 0.

There are several validation examples in testPost test/INP/ for ascii and simulation data
sourcing. Abaqus fil and odb formats are used int the .pst files under the Z-mat directories.

Z-set — Non-linear material
& structure analysis suite 4.16

****post processing

***data output

***data output

Description:
This procedure is used to add a destination output of the post processing data of the following
commands. The selection should normally come at the start of the ***-level commands, except
for a ***data source command which should always be first.

Syntax:

***data_output type
*problem_name name
*elset eset-name
type-specific-options

*problem name is used to specify the root-name of the problem which would have been run
in the native code. Usually the output file will be this name appended with a dot suffix
of the file type.

*elset specifies that the output problem is to be a sub-mesh made up of the given element
set elements. This can be used as a general results file reduction capability with

The following data source types are currently available.

CODE DESCRIPTION

odb ABAQUS odb database format (use command switch -odb

when executing Zrun)

Currently there are no additional type-specific options.

. . . continued

Z-set — Non-linear material
& structure analysis suite 4.17

****post processing

***data output

Example:
A typical example follows. The data output capability has test cases in the
test/Z-mat/zebu interface with a full assortment of stacked input and output runs are
done.

****post_processing

***data_source Z7

**open zpost_matsim.utp

***data_output odb

*problem_name lifetime

*elset MANIFOLD

***local_post_processing

**output_number 1-9999

**file node

**nset manifold_nodes

**material_file post_coefs.mat

**process neu_sehitoglu_evi

*total_strain_for_range

**process copy % for validation between input/output

*list_var evcum

*out_var evcum

*last_only

****return

Z-set — Non-linear material
& structure analysis suite 4.18

****post processing

***local post processing

***local post processing

Description:
This procedure is used to define the local post computations to apply at nodes or Gauss
points. We recall that the local post computations are performed across all stored time points
at each location. These operations are therefore primarily temporal, whereas a global post is
used for spatial operations such as averaging over volumes. The global operations can however
generate similar fields as local computations.

Syntax:
The following syntax summary applies:

***local_post_processing

[**duplicate | **no_duplicate]

[**elset eset]

[**file file-key]

[**ipset ipset]

[**material_file fname]

[**nset nset]

[**output_number out-num-list]

[**at t1 t2 ... tN]

[**output_to_node|**no_output_to_node]

[**packet_size size]

[**process type]

...

The sub options define geometrical groups of concern, time period, material files, and
the post treatments to apply. Any number of **process commands can be added in a
***local_post_processing section, and they will all normally have their own sub com-
mands and parameters to enter. The following table summarizes the function of each of these
commands, and the pages which follow give the detailed command input syntax.

**duplicate switches if we allow post processors to create variables with the same name
or if the duplicate names are appended with _n# in the **no duplicate case (default).

**elset define the element set of concern.

**file define the type of file where the data will be read. (problem.integ, prob-
lem.node. . .).

**ipset define the Gauss point group of concern.

**material file indicates that a separate material file which is to be used for reading
material coefficients if no *model coef is entered in a *process command.

**nset define the node set of concern.

**output number define the period of time which will be used. The default is the full time
period of existing results.

**at is an alternative to output_number: specific maps can be selected through their time.

Z-set — Non-linear material
& structure analysis suite 4.19

****post processing

***local post processing

**output to node indicates that the post output should be directed to a node file and not
a ctnod file. The distinction is that if copying displacement variables the new files can
have deformed geometry displayed in Zmaster.

**packet size can be used for large output results files to decrease physical memory
requirements. In this case post computations are performed by packets of size ele-
ments/nodes. Note: This option is not compatible with all data-output formats.

**process add a new post computation and begin reading the input for it.

Note:
In the first instance of **local post processing or **global post processing the full de-
scription of the file/localization (e.g. elset)/output range, etc. must be specified. Subsequent
processing entries will however use the last entered data, so that easy switching of local and
global post computations can take place.

Example:
The following is another example input from the test Rainflow test/INP/fatigue.inp:

****post_processing

***precision 5

***local_post_processing

**file integ

**elset ALL_ELEMENT

**output_number 1-40

**material_file fatigue.mat

**process range

*alpha 0.001

*var sig

**process fatigue_S

*mode simple

*var sig

**process multirange

*var sig

*reverse 5

**process fatigue_rainflow

*var sig

*mode simple

*reverse 5

***global_post_processing

**output_number 1

**process average

*list_var Dsig NF_S ncyc D1sig NF1

****return

Z-set — Non-linear material
& structure analysis suite 4.20

****post processing

***local post processing

**output number

**output number

Description:
This command is used to define the period of time which will be active for the post compu-
tation.

Syntax:

**output_number [n1-n2| n1, n2, ..., nN]

The user indicates the number of “maps” in the form of a list of integers, or intervals of
integers. The elements of the list are separated by commas or blank spaces. The intervals are
specified with two integers separated by a dash (-).

In the absence of an **output_number entry, the post-processor will use all the solution
maps in the file problem.ut.

Example:
Output numbers have to be specifically asked for. The following input file snippets demon-
strate the syntax allowable for this.

% to get outputs 1,2,3,4,5,20,35

**output_number 1-5,20,35

% to get outputs 1 and 20

**output_number 1 20

% to get outputs 1, 20 and 30

**output_number 1,20 30

Z-set — Non-linear material
& structure analysis suite 4.21

****post processing

***local post processing

**at

**at

Description:

This command selects which maps which will be active for the post computation by their
time, rather than by their number. Thus, it is an alternative to **output_number.

Syntax:

**at t1 t2 ... tN

Note that specified time steps that do not exist in the results files are ignored. Explicitly
specifying t1 t2 ... tN in the ***resolution bloc ensures that such maps will exist.

Z-set — Non-linear material
& structure analysis suite 4.22

****post processing

***local post processing

**nset

**nset

Description:
This command defines the nodes to be treated by specifying a node group (nset). One can
use the mesher (****mesher) mode of operation to generate these sets.

Syntax:

**nset nset

The groups of nodes nset must of course be defined in the geometry file mesh.geof des-
ignated after the instruction **meshfile file in the file problem.ut. All the nodes of this
group will be taken into account for the post calculation. To simply designate all the nodes
in the structure, one may always use the pre-defined node set ALL_NODE. The nset selection
can be modified at any time with a new **nset instruction.

Example:

**nset surface

% with the following definition in the .geof file:

**nset surface

10 11 12 13 19 20 22 30 31

...

Z-set — Non-linear material
& structure analysis suite 4.23

****post processing

***local post processing

**elset

**elset

Description:
This option defines the elements to be treated with post computations by specifying an element
group (elset). Elsets can be generated in a mesh using the batch mesher (chapter 4).

Syntax:

**elset elset

The group of elements elset must of course be defined in the geometry file mesh.geof
designated after the instruction **meshfile in the file problem.ut. All the elements of this
group will be taken into account for the post calculation; that is to say that the post com-
putations will be evaluated at all the elements Gauss points. To simply designate all the
elements in the structure, one may always use the pre-defined element set ALL_ELEMENT. The
elset selection can be modified at any time with a new **elset instruction.

Example:

**elset wheel

% with the following definition in the .geof file:

** elset wheel

1 2 3 4 5 6 7 8

...

Z-set — Non-linear material
& structure analysis suite 4.24

****post processing

***local post processing

**ipset

**ipset

Description:
This command is used to select the integration point set (ipset) to treat with post computa-
tions.

Syntax:

**ipset ipset

The group of Gauss points ipset must be defined in the geometry file mesh.geof designated
after the instruction **meshfile in the file problem.ut. Gauss points are specified in the
mesh.geof file under the group section **ipset by a series of element/integration point
couples (nel/nip with nel the element id and nip the integration point number indexed from
1). The ipset selection can be modified at any time with a new **ipset instruction.

Example:

**ipset failure

% with the following definition in the .geof file:

** elset failure

1/1 1/2 2/1 2/2 3/1 3/2 4/1 4/2

...

Z-set — Non-linear material
& structure analysis suite 4.25

****post processing

***local post processing

**file

**file

Description:
This command is used to specify on what types of file the post calculation will be calculated.
There is no selection by default.

Syntax:

**file filetype

where filetype is the selection of files to read, among the possible files which were output
by the finite element calculation. In the general case, the type of output file produced is the
same as the input data file (i.e. if the input is an .integ file the output .integp file has the
exact same format with different variables).

The following table is a summary of the different possibilities:
filetype file read file created

__________________ __________________ __________________

integ problem.integ problem.integp

ctele problem.ctele problem.ctelep

ctmat problem.ctmat problem.ctmatp

node problem.node problem.ctnodp

+ problem.ctnod + problem.ctnodp

�

Certain post-processors do not respect this generality. For example node_interpolation

reads its input data in the file problem.node but produces results in the file problem.integp.
The “active” file selection can be modified at any instant with a new **file instruction.

Example:

% to select the file extension .integ

% the results will be written in a file with a .integp

% extension

**file integ

Z-set — Non-linear material
& structure analysis suite 4.26

****post processing

***local post processing

**material file

**material file

Description:
This command is used to specify the name of a material file containing coefficients when they
are necessary. This file can be updated during the progression through the post calculations
if it is necessary. The current material file is the one selected by the last instance of this
command.

Syntax:

**material_file file

Example:

**material_file aluminum

Material file syntax:

As this material file can be the same for the finite element, simulation and post processing
calculations, it is necessary to localize the post-processor’s specific data. This is done with
an entry of the command ***post_processing_data1. In this data-entry section, different
entries for the different post processors requiring coefficients should be entered. Each section
will contain coefficients specific to the post processor given. Coefficients use the COEFFICIENT

objects given in the Z-mat manual in Chapter 5.
Note that the COEFFICIENT can depend on the internal variables, auxiliary variables, flux

and grad variables, or the external parameters (if the save parameter option was used for
the later).

Syntax:

***post_processing_data

**process PROCESS [option1 ... optionP]

name1 COEFFICIENT

....
nameN COEFFICIENT

The optional input parameters option1 ... optionP can be used to specify the particular
use of the given post computation by giving an application option keyword, the tensor or
variable on which it operates, etc.

The names name1 ... nameN are the local names of the coefficients necessary to define for
the corresponding calculation. These coefficient names are given for each process computation
in the manual sections which follow.

Example:

1Other behavior commands such as ***behavior terminate at the next command of level ***. This ef-
fectively distinguishes the components of the material file, just as the **** level commands do in the input
file

Z-set — Non-linear material
& structure analysis suite 4.27

****post processing

***local post processing

**material file

***post_processing_data

**process fatigue_S sig

M 2400.

beta 5.

sigma_l 120.

sigma_u 450.

***post_processing_data

**process creep xtv

A temperature

1400. 1050.

2350. 900.

5000. 700.

r 5.

Z-set — Non-linear material
& structure analysis suite 4.28

****post processing

***local post processing

**process

**process

Description:
This keyword introduces a post-computation to be added to the set of available results. most
post computations take one or more subject variables which will provide the basis of the
calculations (e.g. finding principal values of a tensor takes a tensor name as the subject,
which could be sig to find the principal stresses).

Post-computations which take subject variables introduced by the key word *list_var

are applied uniquely to scalar variables. All the character strings following the key word are
interpreted as such.

�
Certain post-computations which use the keyword *var to introduce the subject variable

are applied to either scalar or tensorial variables. In this case, there will also be a command
option named *type which is provided to specify the type of variable. Nevertheless, in order
to simplify the input, the following variable name convention is given:

• All character strings which end in 11, 22, 33, 12, 23 and 13 will be interpreted as the
name of a scalar variable.

• Otherwise the character string is interpreted as a tensorial variable name.

The following local post-processor types are available in the standard distribution.

HCF LCF adiabatic_temperature

base_fatigue copy creep

delay derive deviator

ductile_failure eigen2 evcum_sum

external fatigue_E fatigue_EE

fatigue_S fatigue_rainflow fmax

fmin format function

harmonic hyper_visco inc_creep_damage

inelastic initiation integrate

load local_frame_axes mat_sim

max min mises

multirange neu_sehitoglu norm

oxidation rainflow range

trace transform_frame tresca

triax z7p

Z-set — Non-linear material
& structure analysis suite 4.29

****post processing

***local post processing

**process copy

**process copy

Description:
The copy post processor is used to re-name a variable as a copy into the results database files.
There are several occasions where this operation would be useful:

• For Z-mat runs where all the state variables are named SDV# (ABAQUS) or SVR# (AN-
SYS), etc. The copy operation can be used importing the original input file using a
**data source (see page 4.14) and re-naming them in a more meaningful way. Note
also that if the output naming respects the 11 22 33 12 23 31 ordering those sub-variables
will be considered as tensors in further Z-post operations.

�Remember that the SDV# name mapping can be determined using the Zpreload com-
mand or by looking at the calculation message files.

• To copy a database into a different format, but making certain to respect important
fundamental names (such as U1 sig11 etc. Using the copy functionality can therefore
be used to reduce the size of a results set, or to translate between different supported
formats.

• To fake the name of a tensor if needed. For example one could open an Abaqus ODB
file, and copy the plastic strain tensor to be the total strain tensor and submit that to
another code requiring total strain only.

There are no doubt other uses for such a capability, but these are the primary intent of the
command.

Syntax:

**process copy

**list_var var1 var2 ... varN
[**out_var o-var1 o-var2 ... o-varN]

The variables will be copied in the order given. Memory can be reduced for large models
by breaking up man copies into several **process copy operations.

Note:
If the **out var option is not given, the output names will be the same as the input names,
so that should only be used when the post results are desired to “stand alone.”

. . . continued

Z-set — Non-linear material
& structure analysis suite 4.30

****post processing

***local post processing

**process copy

Example:
The following copies an Abaqus odb file to a new one while re-naming the state variables
(in this case a ***data storage command was used to reduce the SDV allocations to just 2
variables).

****post_processing

***global_parameter

ODB.MaxSteps 100

***data_source odb

**open my_abaqus_run.odb

**write_geof

**nset interesting_nodes *elset MAIN_ELSET *function 1.0;

***data_output odb

*problem_name zpost_copy_odb

*elset MAIN_ELSET

***local_post_processing

**output_number 1-999

**file node

**nset interesting_nodes

% DO NOT USE PACKET SIZE HERE

**process copy

*list_var SDV1 SDV2 NT11

*out_var evcum Dsum temperature

**process copy

*list_var sig11 sig22 sig33 sig12 sig23 sig31

**process copy

*list_var LE11 LE22 LE33 LE12 LE23 LE31

*out_var eto11 eto22 eto33 eto12 eto23 eto31

****return

Z-set — Non-linear material
& structure analysis suite 4.31

****post processing

***local post processing

**process creep

**process creep

Description:
This post calculation calculates creep damage at an instant t in relation to a variable T , such
as the integration of time between t1 and t:

I(t) = (k + 1)

∫ t

t1

(
S − S0

A

)r
with

S = (1− α− β)Mises(T) + αEig1(T) + βTrace(T)

where Mises(T) indicates the second invariant of the deviatoric part of a tensor T, Eig1(T)
the maximum principal value, and Trace(T) the trace (first invariant.

In accordance with the users choice, the result is given in terms of time to rupture or
number of cycles to rupture. Two cases are envisioned:

• I(t) attains 1 for a value of time between t1 and t2: the corresponding value is the time
to rupture, and the number of cycles to rupture is set to one.

• I(t2) is less than 1: the time to rupture is obtained by superimposing a cyclic time and
linear cumulation law. The number of cycles to failure is simply the inverse of I(t2)
and the time to rupture is obtained by multiplying this number by the length of loading
considered.

Syntax:

**process creep

*var name
[*type scalar | tensor]

[*express_life_as cycle | time]

[*delay]

[*scale lin | log]

[*precision prec]

name is the name of the variable to treat. The option *express_life_as is used to specify
the output mode to be number of cycles or time to failure. With the option *delay a scaled
stress measure is used: dS′ = (S − S′)/τ .

The user must furnish the coefficients S0, A, and r. Coefficients k, alpha et beta are
optional with zero value by default. If it is used, the coefficient k must be a constant. One
more supplemental coefficient tau is expected with the option *delay.

In the file problem.utp, we call the variable for time to rupture TC_S, and the number of
cycles to rupture NC_S. If the output was put on a logarithmic scale, the names will be LTC_S

and LNC_S. We generally prefer to work with log values when generating contour plots.
Creep damage is integrated using a second-order runge-kutta method. The precision

required for integration can be specified by the optional *precision keyword. Default value
is 1.e-4.

Z-set — Non-linear material
& structure analysis suite 4.32

****post processing

***local post processing

**process creep

Example:

% Use stress tensor to compute time to failure and give

% a logarithmic output

**process creep

*var sig

*scale log

*express_life_as time

% The following syntax is used in the material file :

**process creep

A 1130.

r 7.

S0 0.

alpha 0.3

beta 0.

% ... but the coefficients may be non constant

**process creep

A temperature

1130. 1050.

2000. 700.

....

Z-set — Non-linear material
& structure analysis suite 4.33

****post processing

***local post processing

**process cycle

**process cycle

Description:
The cycle post processor may be used to apply the same post-processing operations on
all cycles of a cyclic calculation. Typical application is to monitor the evolution of critical
quantities (stress amplitude, mean stress, number of cycles to failure, etc...) from one cycle
to the other.

This post-processor takes an arbitrary number of sub-processors as arguments. The output
maps available in the results file that correspond to each cycle are automatically selected, and
given as input to the embedded sub-processors. The definition of the time period of the cyclic
calculation is used as a basis to sort out which maps do belong to a particular cycle.

A single map of post-processing results will be generated for each cycle detected in the
sequence of output maps available in the input results files. In this context two types of
embedded sub-processors may be distinguished:

• (i) post-processors that generate one map of results for each input map (eg.
*process mises, *process function, etc ...)

• (ii) post-processors that generate one single map for the whole range of input cards (eg.
*process max, *process range, etc ... and all the damage post-processor in general)

Type (ii) needs no further specification, since the results given for each cycle correspond to
a standard calculation on the associated cycle input maps (that may be selected by a repeated
use of the **output_number command). On the opposite, for type (i) post-processors 2
options are available to specify if eiher the max of average value should be retained for each
cycle.

Syntax:

**process cycle

*period period
[*start tstart]

[*end tend]

*process proc1 [typ1] [sec1]

*process proc2 [typ2] [sec2]

...
*process procn [typn] [secn]

where period if the time period value of the cycle.
The *start command may be added if a preload sequence is stored in the results file, that

needs to be skipped before scanning for cyclic results.
Similarly, the optional *end command will stop the scanning of cyclic results for maps

whose time values are greater than the tend specified.
Embedded sub-processes are specified by an arbitrary number of *process commands.

Argument proci is the name of the sub-process, and seci is the number of the input file
section where the actual **process proci definition will be given. Default value for this
section number is 2. For type (ii) post-processors (see description above) argument typ1 can
be either max or average (default value is max).

Z-set — Non-linear material
& structure analysis suite 4.34

****post processing

***local post processing

**process cycle

Variables written in the post-processing files are the cycle number (variable cyc) and
output variables associated to the various sub-processes. For the latter, the ”_cyc” character
string is appended to the conventional variable name.

Note:
Specification of a material file is mandatory when using *process cycle, even if embedded
sub-processors don’t need any material coefficients. In the latter case an empty material is
required:

***post_processing_data

***return

Example:

The following commands can be used to compute

the max value of the von mises stress invariant

the mean value of the average stress, and the

multiaxial stress amplitude for each

cycle stored in the FE results files.

The process format allows to store the result

in an ascii file: note the "_cyc" character

string added to the name of the sub-process

output variables.

% first section

****post_processing

...

% note the need of an empty material file

**material_file fake

**process cycle

*period 10.

*process mises max 2

*process trace average 2

*process range 2

**process format

*list_var cyc sigmises_cyc sigii_cyc Dsig_cyc

*file cycle.post

****return

% second section: sub processes definition

****post_processing

**process mises

*var sig

**process trace

*var sig

**process range

*var sig

****return

Z-set — Non-linear material
& structure analysis suite 4.35

****post processing

***local post processing

**process cycle

The *process fatigue_S should in theory be applied

on the stabilized cycle. The next example illustrates

how to use *process cycle to evaluate the influence

of an incomplete material stabilization on

the number of cycles to failure predicted by the

fatigue_S model.

% first section

****post_processing

...

**material_file fatigue_S_coefs

**process cycle

*period 50.

*process fatigue_S

**process format

*list_var cyc NF_S_cyc

*file nf_evolution.post

****return

% second section: sub processes definition

****post_processing

**process fatigue_S

*var sig

****return

Z-set — Non-linear material
& structure analysis suite 4.36

****post processing

***local post processing

**process cycle project

**process cycle projection

Description:
This post is used when we have a multiaxial loading which is close to proportional and it is
desired to see the primary stress-strain hysteresis loops. The user will pick a specific point in
a cyclic loading (or series of points at similar conditions) and the requested tensors will be
projected onto the eigen directions determined at that point.

The user can specify the point from which we take the eigen values/vectors from:

• A map number can be given. This will be indexed base 1 from the start of the selected
cards in the active post section (that is if we select maps 20-200, a selection of 20 will
be number 40 in the global maps).

• A time can be given. If the time is between 2 maps the values will be interpolated.

• The post calculation uses a POST CYCLE TOOL object to determine the cycle positions,
from which we can use a cycle number combined with start/mid/end tokens. The default
is this method, with cycle 1/mid selected.

Using the eigen vectors of the ordered principal calculation of the given *primary variable

selection we project the selected tensors into that frame and output them with either the
given list of output names, or as tname cpj. If the primary tensor is desired as output then
it should also be given in the *var listing.

Syntax:

**process cycle_projection tool-type
*primary_variable name
*var name1 name2 ... nameN

[*output name1 name2 ... nameN]

[*time time-val]

[*map map-index]

[*cycle num (start|mid|end)]

[*remap_each_cycle]

Note:
The POST CYCLE TOOL expects that temperature be defined as a field variable. If it does
not, one can use the make field local post computation in order to do so.

. . . continued

Z-set — Non-linear material
& structure analysis suite 4.37

****post processing

***local post processing

**process cycle project

Example:
A common usage is to use the hot spot post computation to identify critical regions, and
then study the mechanical cycles at that location.

In this example we have a nset named min life.nset stored via a hot spot (see page 4.113).
That nset is split in the beginning mesher command **split nset run when loading the
data source so we can specify node locations symbolically. The worst case node is then named
min life 1.

Note that the tmf keyword after the **process cycle projection command identifies the
type of cycle identifying tool to use. Currently the reader should refer to the sehitoglu life
prediction methods (page 4.77) for a discussion. Future versions of the documentation will
have a more expansive discussion on that.

****post_processing

***data_source Z7

**open zpost_matsim.utp

**nset min_life

*nodes_in_file min_life.nset

**split_nset min_life

***local_post_processing

**output_number 1-9999

**file node

**nset min_life_1

**process cycle_projection tmf

*primary_variable sig

*var sig eps_me evi

*out sig_x eps_x evi_x

*cycle 1 mid

*remap_each_cycle mid

*total_strain_for_range

***global_post_processing

**process curve curves_1.test

*precision 3

*node min_life_1 eps_x11 eps_x22 eps_x33 eps_x12 eps_x23 eps_x31

sig_x11 sig_x22 sig_x33 sig_x12 sig_x23 sig_x31

evcum temperature

****return

Z-set — Non-linear material
& structure analysis suite 4.38

****post processing

***local post processing

**process derive

**process derive

Description:
This post calculation computes the derivative of some fields with respect to a variable (time
or another variable). It is computed using a first order formula:

ḟ(ti) =
f(ti)− f(ti−1)

ti − ti−1
if the field is derived wrt. time

∂f

∂x
(ti) =

f(ti)− f(ti−1)

x(ti)− x(ti−1)
if the field is derived wrt. another variable

Syntax:

**process derive

*list_var names base

names is the list of variables to derive with respect to base.

Example:
The following example computes the velocity in each direction. It will generate the fields
D_time_U1, D_time_U2 and D_time_U3.

****post_processing

***local_post_processing

**file node

**nset ALL_NODE

**process derive

*list_var U1 U2 U3 time

****return

Z-set — Non-linear material
& structure analysis suite 4.39

****post processing

***local post processing

**process deviator

**process deviator

Description:
This post calculation calculates the deviatoric stress tensor. The prefix dev_ is prepended to
the tensor name.

Syntax:

**process deviator

*var name

Example:

****post_processing

***local_post_processing

**file integ

**elset ALL_ELEMENT

**process deviator

*var sig

****return

Z-set — Non-linear material
& structure analysis suite 4.40

****post processing

***local post processing

**process ductile failure

**process ductile failure

Description:
This post treatment is applied to predict ductile rupture under monotonic loading. The
defines a damage variable D at the time t which is the integration of time between t0 and t:

D(t) = exp

[∫ t

t0

a exp

(
b
Trace(S)/3.

Mises(S)

)
dp

]

where S is a tensor and p is a scalar variable (normally the equivalent plastic strain).

One output is generated for each solution “map.” As the evaluation of this criterion is
based on an integration, a sufficient number of result outputs are required for a precise answer.
The user should therefore ask for a complete set of intermediate outputs (see output_number

on page 4.21).

Syntax:

**process ductile_failure

*stress name1

*strain name2

[*rice_tracey]

name1 is the name of the tensor, and name2 that for the scalar. With the option
*rice_tracey the criterion is evaluated with the stress tensor sig and the cumulated plastic
deformation2.

The default values for the coefficients a and b are those used by the Rice-Tracey criterion:
a=0.283 and b=1.5.

The variable names generated (in the problem.utp file, and appearing in the Zmaster
results) is DAMAGE in the case of a general ductile criterion, and R_R0 if the particular case of
Rice-Tracey was chosen.

Example:

% Applying the Rice-Tracey criterion needs only:

**process ductile_failure

*rice_tracey

% The following instructions allow the user to also compute

% Rice-Tracey criterion. sig and epcum are respectively

% the names of the stress tensor and of the

2this assumes the name epcum for the cumulated plastic strain. Note that gen evp behaviors name this
variable according to the users input after a potential keyword

Z-set — Non-linear material
& structure analysis suite 4.41

****post processing

***local post processing

**process ductile failure

% cumulated plastic strain in the prob.utp file.

**process ductile_failure

*stress sig

*strain epcum

% The following syntax must be used in the material file :

**process ductile_failure

a 0.283

b 1.5

% This is another criterion:

**process ductile_failure

*stress x1v

*strain evcum

% ... with other values in the material file:

**process ductile_failure

a 0.33333

b 2.

Z-set — Non-linear material
& structure analysis suite 4.42

****post processing

***local post processing

**process eigen2

**process eigen2

Description:
This process is used to compute the eigenvalues of a symmetric second order tensor. No
coefficients are needed. The process provides three values for each point. The eigenvalues are
given in decreasing order, starting by the larger one. Their name in the problem.utp file is
built from the name of the tensor by adding respectively p1, p2 and p3.

Syntax:

**process eigen2

*var name

Example:

% this will provide sigp1, sigp2, sigp3

% with sigp1 >= sigp2 >= sigp3

**process eigen2

*var sig

Z-set — Non-linear material
& structure analysis suite 4.43

****post processing

***local post processing

**process fatigue E

**process fatigue E

Description:
This post-processor is used to predict fatigue lifetime using a strain measure. This strain
measure can be a plastic strain, or another one such as the total strain. The critical variable
is the amplitude of the strain (plastic) for uni-axial loading with a generalization pertinent
for multi-dimensional loading (see the post computation range). If the loading is well known,
the user can give simply the output “maps” necessary to calculate this amplitude (mode n1
n2 in **output_number). In the other case, a period of loading must be input (mode n1-n2
in **output_number).

The strain amplitude is denoted DEQ . The post calculation will generate a single result
record for the entire loading history. The number of cycles to failure is defined as follows:

Nf =

(
DEQ

A

)−α
Syntax:

**process fatigue_E

*var name

[*type scalar | tensor]

[*scale lin | log]

[*range section]

name is the name of the variable to use as input to the computation.

For multi-dimensional loading the amplitude calculation will be made using a range type
post-computation. In order to be able to input options to the range processor, the user can
give a section number for that user input after the *range keyword.

The computation requires input of the coefficients A and alpha in the material file.

Output is given as number of cycles to failure in the variable NF_E. If the user specifies a
logarithmic scale using the *scale option, the output variable will be LNF_E.

Example:

**process fatigue_E

*var eto

*scale log

% The following syntax must be used in the material file :

**process fatigue_E

A 1.7

alpha 2.

Z-set — Non-linear material
& structure analysis suite 4.44

****post processing

***local post processing

**process fatigue EE

**process fatigue EE

Description:
This post-computation is used to determine component life by a criterion dependent on a
strain measure (elastic and plastic). The critical variable is the amplitude of the strain for
uniaxial loading, with a generalization for multi-dimensional loading (see the post processor
range). If the loading is well known, the user can give simply the output “maps” necessary
to calculate this amplitude (mode n1 n2 in **output_number). In the other case, a period of
loading must be input (mode n1-n2 in **output_number).

The strain amplitude is denoted DEQ . The post computation will generate a single
output record for the total loading history input. This is the number of cycles to failure,
given by:

DEQ = A Nf
−1/α + B Nf

−1/β

Syntax:

**process fatigue_EE

*var name

[*type scalar | tensor]

[scale lin | log]

[range section]

name is the name of the subject variable of the computation.

For multi-dimensional loading the amplitude calculation will be made using a range type
post-computation. In order to be able to input options to the range processor, the user can
give a section number for that user input after the *range keyword.

The computation requires input of the coefficients A and B, alpha and beta in the material
file.

Output is given as number of cycles to failure in the variable NF_EE. If the user specifies
a logarithmic scale using the *scale option, the output variable will be LNF_EE.

Example:

**process fatigue_EE

*var sig

*scale log

% The following syntax must be used in the material file :

**process fatigue_EE

A 3.

Z-set — Non-linear material
& structure analysis suite 4.45

****post processing

***local post processing

**process fatigue EE

alpha 3.

B 1.7

beta 1.5

Z-set — Non-linear material
& structure analysis suite 4.46

****post processing

***local post processing

**process fatigue rainfl

**process fatigue rainflow

Description:
This command is used in replacement of **process fatigue_S for rainflow counting
evaluations of fatigue life. The model applied is the same as the one described for
**process fatigue_S, but a number of cycles to failure Nf is calculated for each subcy-
cle detected by the **process multirange post-processor.

Syntax:

**process fatigue_rainflow

*var name

[*reverse] number]

[*type scalar | tensor]

[*mode with_a | simple]

[*normalized_coeff]

[*use_mises]

[*scale lin | log]

[*range section]

The only difference with **process fatigue_S is the *reverse keyword, that allows
to specify the maximum number of sub-cycles retained in the calculation, within the ones
detected by the rainflow counting algorithm (see the **process multirange command). De-
fault value is number=3. Note that **process multirange gives out cycles with maximum
amplitude first, such that most damaging cycles are always taken into account in the calcu-
lation. Damage cumulation can be performed by the **process rainflow command.

Material parameters are the same as the ones described for the **process fatigue_S.

By default the equivalent max stress SMAX is the maximal eigen stress SI . Us-
ing the option *use_mises makes SMAX equal the von Mises stress. Caution: in the
**process fatigue_S the default equivalent max stress SMAX is the Mises stress.

Output is as follows:

• ncyc the number of cycles detected. If the algorithm detects more cycles than the
number requested by the *reverse number keyword, the code returns ncyc = number.

• the number of cycles to failure NFi, associated with each sub-cycle i. If a logarithmic
scale is requested by means of the option *scale the output is renamed LNFi.

Z-set — Non-linear material
& structure analysis suite 4.47

****post processing

***local post processing

**process fatigue S

**process fatigue S

Description:
Using the stress as critical variable, the formula implemented by this option predicts a fatigue
life (Wöhler curve). Even though the criterion can be applied to any variable contained in
the problem, the description of the equations is made in terms of stress.

The model is capable of taking into account a mean stress and a multi-axial loading history.
The critical variables are the stress amplitude and the maximum stress (with generalization
pertinent for multi-axial values), calculated over the time period specified by the user.

The model is written in terms of reduced stress (The components of the stress divided
by the last stress under monotonic loading σu). The stress amplitude is noted SEQ , and
the equivalent maximal stress is SMAX , and the mean trace is TRMEAN . The post
computation returns a rupture in one cycle if SMAX attains the ultimate stress σu, and an
infinite number of cycles if SEQ is less than the fatigue limit σl. Otherwise the number of
cycles to failure Nf is defined as follows:

Nf =
1

a(β + 1)

〈
σu − SMAX

SEQ− σ′l

〉(
SEQ

M

)−β

with σ′l = σl(1.− b1 ∗TRMEAN) ; M = M(1.− b2 ∗TRMEAN)

Syntax:

**process fatigue_S

*var name

[*type scalar | tensor]

[*mode with_a | simple]

[*normalized_coeff]

[*use_eigen2]

[*scale lin | log]

[*range section]

name is the name of the subject variable if the computation (one would expect sig here).
Using the extra keyword simple after the option *mode, the post-computation uses a simpler
formulation where the ratio 1/a(β + 1) is included in the coefficient M.

The coefficients sigma_l, M, b1 et b2 can be optionally given in normalized form. If they
are normalized (using the option *normalized_coeff) the expected names in the material
files are changed to N_sigma_l, N_M, N_b1 and N_b2.

The other coefficients necessary to input are beta and a if the option with_a is given.

Z-set — Non-linear material
& structure analysis suite 4.48

****post processing

***local post processing

**process fatigue S

By default the equivalent max stress SMAX is the von Mises stress. Using the op-
tion *use_eigen2 makes SMAX equal the maximal eigen stress SI . Caution: in the
**process fatigue_rainflow the default equivalent max stress SMAX is the maximal eigen
stress SI .

Number of cycles to failure is given in the output, with the variable named NF_S. The
user can ask that a logarithmic scale be used with the option *scale. If so the output will
be named LNF_S.

Example:

**process fatigue_S

*var sig

*scale log

% The following syntax must be used in the material file :

**process fatigue_S

M 2400.

beta 5.

sigma_l 120.

sigma_u 450.

b1 0.002

b2 0.03

Z-set — Non-linear material
& structure analysis suite 4.49

****post processing

***local post processing

**process format

**process format

Description:
This post processor is used to produce an “export file” containing the specified variables for
all the maps being run. The output file is a formatted ASCII file. The variables should exist
in the file specified by the **file command (see page 4.26). For instance, the command
*list var U1 should not be given with **file integ. Note: this post processor also exists
for ***global post processing, with similar options (see page 4.112).

Syntax:

**process format

*file file

*list_var name1 ... nameN

[*precision digits]

[*optimizer]

[*blank_line]

where file denotes the name of the output file, and name1, ..., nameN is a list of scalar
variable names to output. The values are stored point by point for each map. The op-
tion *optimizer inhibits the writing of the character string # time name1 ... nameN. The
option *precision determines the number of digits with which the results will be written
(default is 10), and the option *blank_line writes an empty line between the output of each
location. Some plotting programs, for instance gnuplot, may need this.

Example:
The following example

**output_number 1-3

**process format

*file myfile

*list_var U1 U2

will produce a file called myfile like this:

time U1 U2

1 0 0

2 0 0

3 0 0

1 0 0.01

2 0 -0.01

3 0 0

1 0.01 0.01

2 -0.01 -0.01

Z-set — Non-linear material
& structure analysis suite 4.50

****post processing

***local post processing

**process format

3 0 0

...

Adding the *blank_line and *optimizer options will give

1 0 0

2 0 0

3 0 0

1 0 0.01

2 0 -0.01

3 0 0

1 0.01 0.01

2 -0.01 -0.01

3 0 0

...

Z-set — Non-linear material
& structure analysis suite 4.51

****post processing

***local post processing

**process function

**process function

Description:
This post processor allows the user to write an interpreted function of scalar variables.

Syntax:

**process function

*output name

*expression expression

name is the name of the resulting variable to be generated by the function evaluation.
expression is the function expression to be input (see the function reference on page 5.2). A
semicolon must always mark the end of the function.

Example:

% this example computes FMAX_sig ...

**process fmax

*list_var sig

% and uses it in the calculation of the variable Pr.

**process function

*output Pr

*expression 1.-exp(-(FMAX_sig)/412.);

Z-set — Non-linear material
& structure analysis suite 4.52

****post processing

***local post processing

**process HCF

**process HCF

Description:
This post-computation gives an evaluation of the equivalent stress to compare with the fatigue
limit, in order to define the high cycle fatigue (HCF) resistance.

Four different criteria are implemented for HCF. The variables which provide the basis of
the criterion are the hydrostatic pressure (for each of them), and a stress amplitude in terms
of the von Mises invariant (for three of them), or in terms of a shear (in one case). In the
following, the stress amplitude is designated Dsig (and defined in relation to stresses tensor),
pmax the maximum hydrostatic pressure, and pmean the mean value of hydrostatic pressure
(pmean = 0.5(pmax + pmin).

The following criteria are implemented for the HCF model:

• The criterion from Sines (mode SI) uses a coefficient b to calculate the equivalent stress:

σeq = Dsig + bpmean

• The criterion due to Crossland (mode CR) uses a coefficient b to calculate its equivalent
stress:

σeq = (1− b)Dsig + bpmax

• The criterion from Dang Van uses a coefficient b. Its characteristic, if we compare the
two first two models, resides in the combination of two variables at the same time. Two
versions are implemented:

– The classical model of Dang Van (mode DV) searches for the maximum value in all
the physical space directions (~n), at all instants ti of the equivalent stress. This
is constructed from the current shear stress amplitude τ and from the hydrostatic
stress:

σeq = max(~n) min(ti)(τ(ti) + bp(ti))

– An alternative formulation of the Dang Van criterion (mode DV2) is also imple-
mented. Following the same philosophy as previously, this modification provides a
simpler evaluation because it uses a von Mises stress measure. Knowing the stress
amplitude one can calculate the value σ0 corresponding to the loading path “cen-
ter.” The critical variable DJ2(ti) then corresponds to the the von Mises invariant
of the difference in current stress and σ0:

σeq = max(ti)(DJ2(ti) + bp(ti))

Syntax:

**HCF

Z-set — Non-linear material
& structure analysis suite 4.53

****post processing

***local post processing

**process HCF

*mode SI | CR | DV | DV2

The user must choose the mode of operation (SI, CR, DV, or DV2). The coefficient b must
be defined in the material file. The post-computation produces an output for each input point
at each time, which is the equivalent stress. The output variable name is HCF_mode.

Example:

**process HCF

*mode DV2

% With the following definition in the material file

**process HCF DV2

b 0.3

Z-set — Non-linear material
& structure analysis suite 4.54

****post processing

***local post processing

**process initiation

**process initiation

Description:
This post processor is used to estimate the time to crack initiation. For a cycle the initiation
damage is calculated by the following expression:

Ia =
1

c

∫
cycle

〈
< SII − Sla(1−Dox)

(1−Dox)− Seqmax

〉b
dN

with

Sla = Sla0(1− hTrace(S))

and Dox =
√
N/Nox if we’re taking into account the effect of oxidation, Dox = 0 otherwise.

A single output map is generated for the total history of loading. The number of cycles
to initiation Na which corresponds to the moment where the damage attains a value of 1.
The variable name generated is Na in the problem.utp file. The number of oxidation cycles
ahead of the start of initiation (stress lower than the fatigue limit) is also saved with the name
Na-ox.

Syntax:

**process initiation

*var name

*type scalar | tensor]

[*normalized_coeff]

[*oxidation [section1]]

[*range section2]

name is the variable name. It is systematically normalized by the coefficient sigma_u

given in the material file.

The option *oxidation is optional. If it is present, it can be followed by the number of
section containing the user input for oxidation. Otherwise the oxidation will be initialized
with its default values.

For multi-dimensional loading the amplitude calculation will be made using a range type
post-computation. In order to be able to input options to the range processor, the user can
give a section number for that user input after the *range keyword.

The coefficients Sla0 and h are given normed or not. If they are normalized (the option
*normalized_coeff was given), the expected names in the material file will be N_Sla0 N_h.
The other coefficients which must be input are b and c.

Example:

Z-set — Non-linear material
& structure analysis suite 4.55

****post processing

***local post processing

**process initiation

% a complete example

**process initiation

*var sig

*oxidation

*norm

*normalized_coeff

%with the following syntax in the material file :

**process initiation

sigma_u 130.

N_h 5.2

N_Sla0 0.023

b 2.

c 3500.

Z-set — Non-linear material
& structure analysis suite 4.56

****post processing

***local post processing

**process LCF

**process LCF

Description:
This process is used to apply a cumulation model for the life prediction under creep-fatigue
interaction. The reference number of cycles to failure in pure fatigue and in pure creep must
have been previously computed. The number of cycles to failure under creep-fatigue loading
is defined as Nr, from the number of cycles to failure under creep Nc and the number of cycles
to failure Nf . Several cumulation rules can applied, according to users’s choice:

• linear cumulation, LC

1

Nr
=

1

Nc
+

1

Nf

• bilinear cumulation, BLC

A ”knee-point” is defined in the cumulative diagram, from the numerical value of the
material coefficients Kc and Kf (both values must be between O and 1).

if
Nc

Nf
≥ Kc

Kf
:

1

Nr
=

1

Nf
+

1−Kf

Kc

1

Nf
(1)

if
Nc

Nf
≤ Kc

Kf
:

1

Nr
=

1

Nc
+

1−Kc

Kf

1

Nc
(2)

The resulting cumulation rule must :

- be equivalent to the linear cumulation rule if Kc +Kf = 1

- predict lower life if Kc +Kf < 1

- predict longer life if Kc +Kf > 1

• nonlinear cumulation, NLC
The cumulation rule uses the quantities C = 1

Nc
and F = 1

Nf
to compute damage

evolution from Di to Df in each cycle, according to:

C = (1−Di)
k+1 − (1−D)k+1 (3)

F =
[
1− (1−Df)β+1

]1−α
−
[
1− (1−D)β+1

]1−α
(4)

The resulting cumulation rule predicts lower lives than linear cumulation does.

Z-set — Non-linear material
& structure analysis suite 4.57

****post processing

***local post processing

**process LCF

• another nonlinear cumulation, NLC ONERA
This is the same cumulation rule as previously given. The difference rests in the the
coefficient α which is constant in the mode NLC and calculated as follows in this mode:

α = 1− a ∗
(
Dsig/2− σl
σu − σmax

)
(5)

with

σl = σl0(1− b1 ∗ tr(σ)) (6)

Syntax:
The syntax for this criterion is as follows.

**process LCF

*mode LC | BLC | NLC | NLC_ONERA

*fatigue name1 section1

*creep name2 section2

[*initiation name3 section3]

[*scale lin | log]

The user chooses his method of cumulation among the key words LC, BLC, NLC and
NLC_ONERA after *mode. name1 is the name of the fatigue processor to apply, and name2 the
name of the creep processor. Those which are currently available for fatigue are fatigue_S,
fatigue_E and fatigue_EE. The current creep processor is uniquely creep. Plug-ins could
however be created for new models of either of these. For each the user indicates after the
processor type a number of post processing section containing the input for that processor.

The user can add an initiation phase, of which the name and the post processing section are
specified after the option *initiation. Only the post-computation initiation is currently
available. The number of cycles Na is then taken into account in the cumulation rule.

The model LC does not require any material coefficients. Two coefficients Kc and Kf are
necessary for the model BLC, three coefficients k, alpha and beta for the model NLC, and five
coefficients k, beta, a, sigma_l0 and b1, are required for the model NLC_ONERA. Some of these
coefficients appear in the criterions for creep or fatigue. In this case the reading will attempt
to find the coefficients in the respective creep or fatigue sections. For example, the coefficient
k of the mode NLC will be read in the section **process creep, if it is present, otherwise in
the section **process LCF of the material file.

The number of cycles to failure Nr is called NR_mode in the output variables. The user
can also ask for a logarithmic scale which will re-name the output to LNR_mode. The number
of cycles to failure Nf , Nc and Na are also stored in the output (see these processors to find
the specifics of variable naming).

Example:
A complete example with non linear cumulation rule follows:

Z-set — Non-linear material
& structure analysis suite 4.58

****post processing

***local post processing

**process LCF

**process LCF

*mode NLC

*fatigue fatigue_S 2

*creep creep 2

*scale log

% with in an other ****post_processing section

**process creep

*var sig

**process fatigue_S

*var sig

*range 2

**range

*var sig

*method 2

*alpha 0.2

% With the following definition in the material file

% beta and k are readed in their specific section

**process LCF

alpha 0.9

**process fatigue_S

M 980.

beta 2.5

sigma_l 70.

sigma_u 180.

b1 0.003

b2 0.003

**process creep

S0 0.

A 420.

r 10.

k 30.

Z-set — Non-linear material
& structure analysis suite 4.59

****post processing

***local post processing

**process make field

**process make field

Description:
This post is used to create field variables from some other source than directly from a results
database. For example, a uniform temperature can be imposed (satisfying post computations
requiring that variable be present), or for doing analytical solutions or graphing over a mesh
body.

Syntax:
The following syntax summary is available:

**process make_field

*var name1

[*single_value val]

[**single_field scale-val fname]

[*constant_values]

time# val#

...

[*constant_field]

time# scale-val# fname#

...

Multiple instances of *constant values and *constant field can be used to mix uniform
fields and fields loaded in from an external file.

Example:
There are examples of this process in the tests plast3.inp and hot_spot.inp under
test/Post_test/INP. An excerpt of the hot_spot.inp test case follows, and is a good ex-
ample of how one can use FEA post processors as a general visualization tool for spatial
functions. The data for that test is generated in a small perl script hot_spot.pl.

****post_processing

***data_source mesh_only

**format Z7

**open hot_spot.geof

**maps 0. 1. 2. 3.

***local_post_processing

**process make_field

*var X

*constant_values

0. 0.2

*constant_field

1. 2. hot_spot.dat

3. 1. hot_spot.dat

Z-set — Non-linear material
& structure analysis suite 4.60

****post processing

***local post processing

**process mat sim

**process mat sim

Description:
This post-processor re-simulates material behavior given a strain and parameter (e.g. tem-
perature) history. This post computation is most useful with very large structures and with
imported results files. For example, ABAQUS ODB files are much larger than the Z-post files
for the same stored results. In that case only the strain need be stored from the FEA run, and
additional material state variables can be generated as need-be using this process. This can
also be used to re-establish “named” material variables consistent with the material model
instead of having SDV indexed names.

Input:
The full strain history is required in the variable name eto## listed as full tensor. The
dimension will be consistent with the finite element geometry dimension. If the name eto is
not directly available (for example with abaqus calculations using *NLGEOM we have LE##) a
copy post process can be used beforehand to re-map the name.

If a *parameter option is given the parameters must be in input results as well. The
user has the option to re-map those names using the *change param name. For exam-
ple with abaqus results one would specify *parameter NT11 and then re-map that with
*change param name NT11 temperature .

Output:
The output variables are selected by the user. Before running, the Zpreload command can
be run on the material file to get a listing of available material variables.

Syntax:
Basic options for this post are:

**process mat_sim

[*change_param_name from-name to-name]

[*every_increment]

[*file fname]

[*integration INTEGRATION]

[*parameter p1 p2 ... pN]

[*p_init pval1 pval2 ... pvalN]

[*rotation ROTATION]

[*save v1 v2 ... vN]

The command descriptions are given below:

*every increment selects if the output will be for every solution map, or just the re-
sult at the end of the calculation (or selected maps). If this is not careful use of
**output number 1-999 can allow the user to investigate full material variables at
specific points in time.

Z-set — Non-linear material
& structure analysis suite 4.61

****post processing

***local post processing

**process mat sim

*change param name used to re name a parameter to be consistent with Z-mat names.

*file specifies the material file (as in standard Z-mat or Z-set input procedures).

*integration specifies the material integration rule to use rather than the default.

*parameter specifies parameter names which are to be added and having constant values.

*p init specifies parameter values in sequence that they have been defined which repre-
sent the initial values. This is important because often the first FEA result map has
already had some loading, and thermal strain for example will be calculated based on
the temperature difference from the rest state before that results map.

*rotation specifies the material rotation.

*save gives a listing of the variables which are desired to be stored in the new results files.

Example:
The following example is from Post test/INP/disk6 matsim.inp

***local_post_processing

**output_number 1-999

**file integ

**elset ALL_ELEMENT

**process mat_sim

*every_increment

*file disk6_matsim.inp

*parameter temperature

*p_init 800.

*integration theta_method_a 1.0 1.e-8 100

*save_variables

evi11 evi22 evi33 evi12 evi23 evi31

eto11 eto22 eto33 eto12 eto23 eto31

sig11 sig22 sig33 sig12 sig23 sig31

evcum

Note:
The material simulation should always be run from the beginning of the loading history, and
following the complete loading path. This is because the material state variables will be
tracked, and has substantial impact on the results.

Z-set — Non-linear material
& structure analysis suite 4.62

****post processing

***local post processing

**process max

**process max

Description:
This post computation gives at each node or Gauss point, the maximum value of a variable
in the course of time. One output is produced for the totality of the time period for each
variable specified.

Syntax:

**process max

*list_var name1 ... nameN

The names name1, ..., nameN designate the list of scalar variables to treat. Outputs
appearing in the file problem.utp will be named MAX_name1, ..., MAX_nameN.

Example:

% compute the maximum value of the U1 and U2 displacements

**process max

*list_var U1 U2

% compute von Mises invariant of the stress tensor, ...

**process mises

*var sig

% ... then its maximum value

**process max

*list_var mises

Z-set — Non-linear material
& structure analysis suite 4.63

****post processing

***local post processing

**process fmax

**process fmax

Description:
This post computation produces for each variable specified an output per “map” of time,
which corresponds to the maximum value achieved in the loading instant.

Syntax:

**process fmax

*list_var name1... nameN

The names name1, ..., nameN designate the scalar variables to be treated. The output
names which are generated will be of the form FMAX_name1, ..., FMAX_nameN (see the file
problem.utp).

Example:

% this will provide FMAX_U1 and FMAX_U2

**process fmax

*list_var U1 U2

Z-set — Non-linear material
& structure analysis suite 4.64

****post processing

***local post processing

**process min

**process min

Description:
This post computation gives at each node or Gauss point, the minimum value of a variable
in the course of time. One output is produced for the totality of the time period for each
variable specified.

Syntax:

**process min

*list_var name1 ... nameN

The names name1, ..., nameN designate the list of scalar variables to treat. Outputs
appearing in the file problem.utp will be named MIN_name1, ..., MIN_nameN.

Example:

% compute the minimum value of the temperature

**process min

*list_var TP

% compute eigenvalues of the stress tensor, ...

**process eigen2

*var sig

% 3 new variables are now available for the processing,

% sigp3 <= sigp2 <= sigp1

% ... then the minimum value of the two smaller ones

**process min

*list_var sigp2 sigp3

Z-set — Non-linear material
& structure analysis suite 4.65

****post processing

***local post processing

**process fmin

**process fmin

Description:
This post computation produces for each variable specified an output per “map” of time,
which corresponds to the minimum value achieved up to each loading instant.

Syntax:

**process fmin

*list_var name1... nameN

The names name1, ..., nameN designate the scalar variables to be treated. The output
names which are generated will be of the form FMIN_name1, ..., FMIN_nameN (see the file
problem.utp).

Example:

% this will provides FMIN_TP

**process fmin

*list_var TP

Z-set — Non-linear material
& structure analysis suite 4.66

****post processing

***local post processing

**process mises

**process mises

Description:
This process is used to compute the von Mises invariant of a symmetric second order tensor.
One value per node or Gauss point is obtained for each requested record. If output_name
is not specified, the name of the output variable is obtained by suffixing mises to the input
name.

Syntax:

**process mises

*var name

[*output_name output name]

Example:

% this will provide sigmises

**process mises

*var sig

Z-set — Non-linear material
& structure analysis suite 4.67

****post processing

***local post processing

**process multirange

**process multirange

Description:
This post-processor can be used to analyze complex tridimensional loading paths in order
to extract and count cycles (rainflow counting). It can only be applied to tensorial input
variables.

The method is based upon multisurface theories of plasticity to detect closed loops (cycles)
in the input stress or strain histories and their corresponding amplitude. It is an extension
to the general case of multiaxial non-proportional loading paths of the well-known ”rainflow
technique” conventionally applied to uniaxial loadings. This post-processor can be used in
conjunction with post-processors post_fatigue_rainflow (calculation of fatigue life for each
sub-cycle) and rainflow (cumulation of damage generated by each sub-cycle).

Syntax:

**process multirange

*var name

[*center]

[*reverse number]

name is the input (tensorial) variable which is the subject of the range calculation.

number is the maximum number of sub-cycles given as output (default value is 3). The
code gives a warning in the case where the number of cycles detected is greater than the one
requested for output.

With the option *center, the code sends back additionally the center of the sphere con-
taining the loading path associated with each subcycle.

The output is the following:

• ncyc the number of cycles detected. If the algorithm detects more cycles than the
number requested by the *reverse number keyword, the code return ncyc = number.

• for each cycle i:

– Diname the amplitude of cycle i for input variable name,

– niiname is the number of the output map (within the ones selected by the
**output_number command) corresponding to the beginning of cycle i,

– nfiname is the number of the output map (within the ones selected by the
**output_number command) corresponding to the end of cycle i,

– optionally if the *center keyword is included, the components of tensor Ciname
at the center of the sphere including the loading path for cycle i.

Output cycles are stored by decreasing values of amplitude, such that the most meaningful
cycles are included even if the number of requested cycles (specified by the *reverse keyword)

Z-set — Non-linear material
& structure analysis suite 4.68

****post processing

***local post processing

**process multirange

is smaller than the one detected by the rainflow algorithm. In the the event where the number
of requested cycles is larger than the one detected, all corresponding quantities are zero.

Example:

Applying the following commands to the loading path of the above figure:

**output_number 10-14

**process multirange

*var X

*reverse 3

*center

will yield as output:

• ncyc = 2

• D1X = 200, ni1X = 1, nf1X = 4, C1X11 = 100, C1X22 =0 ...

• D2X = 100, ni2X = 1, nf2X = 3, C2X11 = 150, C2X22 =0 ...

• D3X = 0, ni3X = 0, nf3X = 0, C3X11 = 0, C3X22 =0 ...

Z-set — Non-linear material
& structure analysis suite 4.69

****post processing

***local post processing

**process norm

**process norm

Description:
The norm post processor is used to norm a tensor or scalar variable. It returns a variable
of the same type (tensor or scalar) with name constructed by pre-fixing the original variable
name(s) with an N.

Syntax:

**process norm

*var name

[*type tensor|scalar]

The user must give a material coefficient sigma_u. The coefficient can be constant or
depend on other parameters.

Example:

% this will provide 4 components :

% Nsig11, Nsig22, Nsig33 and Nsig12

**process norm

*var sig

% the following syntax must be used in the material file:

**process norm

sigma_u 170.

Z-set — Non-linear material
& structure analysis suite 4.70

****post processing

***local post processing

**process oxidation

**process oxidation

Description:
This post-processor can be used to quantify the effects of oxidation which contributes to the
mechanisms of damage.

We calculate, for a cycle, the oxidation damage Iox with the following expression:

Iox =

∫
cycle

(
K0

e0
exp

(−Q
RT

)[
1 +

〈
S − Slox

B

〉]m)2

dN

with

S = (1− α− β)Mises(σ) + αEig1(σ) + βTrace(σ)

and

Slox = Slox0(1− hTrace(σ)) + Trace(σ)

The output is generated as a single map for the whole loading history. The cycle number
is Nox, defined as the inverse of oxidation damage per cycle and denoted Nox in the output.

Syntax:

**process oxidation

*var name

[*type scalar | tensor]

[*delay]

[*norm

[*normalized_coeff]]

[*isotherm]

name is the variable name to treat. If the option *norm is specified the subject variable
will be normed by the coefficient sigma_u furnished in the material file.

With the option *delay the lag stress S′ will be used. The lag stress is computed from

dS′ =
S − S′
τ

The coefficients B, Slox0, and h are to be given in the material file regardless of the use
of normalization. If they are normalized (option *normalized_coeff) the expected names in
the material file will be N_B, N_Slox0 and N_h.

With the option *isotherm the temperature is read in the material file using a “coeffi-
cient” temperature. Otherwise the temperature must be included in the output files (use the
**save_parameter output option in the FEA calculation.

Z-set — Non-linear material
& structure analysis suite 4.71

****post processing

***local post processing

**process oxidation

alpha and beta are optional coefficients, having a zero value by default. The other
coefficients which must be input are m, K0, e0 and Q. The additional coefficient tau must be
supplied if the *delay option was input.

Example:

% a simple example

**process oxidation

*var sig

*norm

% The following syntax must be used in the material file :

**process oxidation

sigma_u 850.

B 46.5

m 2.5

Slox0 0.12

h 3.5

e0 50.e-06

K0 1.42

Q 214.

Z-set — Non-linear material
& structure analysis suite 4.72

****post processing

***local post processing

**process rainflow

**process rainflow

Description:
This command can be used in replacement of **process LCF to perform damage cumulation
within a rainflow counting procedure. Cumulation rules and material parameters are the same
as in the case of the **process LCF post-processor.

Syntax:

**process rainflow

[*reverse number]

*mode LC | NLC | NLC_ONERA

*fatigue fatigue_rainflow section1

[*creep name2 section2]

[*scale lin | log]

[*load_cycle cb1-ce1 cb2-ce2 ... cbn-cen]

The main difference with **process LCF is the *reverse keyword, that allows to specify
the maximum number of sub-cycles retained in the calculation, within the ones detected by
the rainflow counting algorithm (see the **process multirange command). Default value
is number=3. Note that **process multirange gives out cycles with maximum amplitude
first, such that cumulation is always performed for the most damaging cycles.

Contrary to **process LCF, the only fatigue model allowed is the one implemented in
the **process fatigue_rainflow post-processor (see this command).

Note also, that the creep damage part is optional in this post-processor, and that cumula-
tion can be restrained only to the fatigue damage induced by the sub-cycles detected by the
rainflow algorithm.

The optional command *load_cycle can be used to define a preloading and calculate
the associated initial damage, before cycling occurs. Preloading definitions have the form
cbi-cei, where cbi and cei are the map numbers defining respectively the beginning and the
end of the preloading sequence number i. An arbitrary number of sequence can be given.
When using this command, the last sequence cbn-cen given as input, is used to define the
cycle that will be repeated until failure. The number of cycles to failure calculated are thus
the number of times sequence cbn-cen can be repeated, taking into account an initial damage
corresponding to sequences cb1-ce1 to cbn-1–cen-1. Note that map numbers given as input are
in fact relative, and depend on the **output_number command specified before the current
**process rainflow definition.

Output is as follows:

• ncyc the number of cycles detected. If the rainflow algorithm detects more cycles than
the number requested by the *reverse number keyword, the code returns ncyc =
number.

Z-set — Non-linear material
& structure analysis suite 4.73

****post processing

***local post processing

**process rainflow

• the number of cycles of failure NFi corresponding to fatigue damage associated with each
sub-cycle i.

• if the option *creep is included the number of cycles to failure NC associated with creep
damage,

• the number of cycles to failure NR_mode obtained by culmulation of the previous damage
mechanisms,

• the initial damage Dpreload corresponding to preloading sequences when the command
*load_cycle is used.

Z-set — Non-linear material
& structure analysis suite 4.74

****post processing

***local post processing

**process range

**process range

Description:
This post-processor calculates the amplitude of a scalar or tensorial variable from its history.

In the case of a tensorial variable, an invariant of the type von Mises is used to calculate
the space distance in the six different dimensions, and the result is the diameter of the smallest
sphere encompassing the point of interest’s path during the loading.

Syntax:

**process range

*var name

[*type scalar | tensor]

[*method num]

[*alpha valeur]

[*center]

[*delta]

name is the input variable which is the subject of the range calculation.

Two methods are available. By default, the first method is applied. If the first method
fails, it will automatically roll over to the second method. This later depends on a coefficient
alpha which must be between 0 and 1. Its default value is 0.2.

With the option *center, the code sends back additionally a tensor corresponding to the
center of the sphere containing the loading path.

With the option *delta, implemented only with the scalar keyword, the code just deliver
the difference of the prescribed variable between the last two increments.

The generated output will consist of the amplitude named after the input subject prefixed
with a D. If the center tensor is output, the prefix C is added.

Example:

% this will provide Dtemper

**process range

*type scalar

*var temper

% this will provide DX

% using directly the second method

% and the center (CX11, CX22, CX33, CX12)

**process range

Z-set — Non-linear material
& structure analysis suite 4.75

****post processing

***local post processing

**process range

*var X

*method 2

*alpha 0.15

*center

Z-set — Non-linear material
& structure analysis suite 4.76

****post processing

***local post processing

**process neu sehitoglu

**process neu sehitoglu

Description:
This post-processor implements the thermo-mechanical fatigue model proposed by Neu and
Sehitoglu [Neu89]. This model is a bit of a departure from the rest of the fatigue analysis
post-processing in that it does not re-use components for LCF, oxidation and creep damages,
but rather implements the specific forms defined in the referenced paper.

The damage is a linear summation of three components as per standard practice in thermo-
mechanical fatigue studies.

D = Dfatigue +Doxidation +Dcreep

And the number of cycles to failure can be found from the cumulated damage over a number
of studied cycles, Nc:

Nf = Nc/D

The interesting part of the Neu and Sehitoglu is their assignment of a damage phase
factor, which accounts for the tendency for creep damage in in-phase loading (such as found
in rotating machinery or pressure vessels at high temperature), and oxidation cracking in
out-of-phase loading (such as around notches in constrained geometries).

φox =
1

t

∫ tc

0
exp

[
−1

2

(
ε̇th/ε̇mech + 1

ξox

)2
]
dt

φcr =
1

t

∫ tc

0
exp

[
−1

2

(
ε̇th/ε̇mech − 1

ξcr

)2
]
dt

So the coefficients xi ox and xi cr control the width of oxidation and creep effects about
pure out-of-phase and pure in-phase loading respectively.

Fatigue part:
The fatigue part can be determined in several ways. In general we look at the strain range as
being the maximum shear strain range in from the cycle calculated as follows:

∆γ = 1
2(∆eloading1 −∆eloading3) + 1

2(∆eunloading1 −∆eunloading3)

with the ∆e1 and ∆e3 terms being the 1st and 3rd ordered eigenvalue of the strain increment
from across the cycle. Note that the default method does not take the critical plane of all
loading points in the cycle, but rather just the points of the major temperature cycle. If the
*use loading or *use unloading option is given, we use only one term above instead of the
average. Normally for a stabilized cycle the loading and unloading parts should be symmetric.

In the above strain range calculation, we also allow for either the total mechanical strain
to be used (model neu sehitoglu) or the plastic strain range (model neu sehitoglu evi),
and currently there is no HCF (stress based) part taken into account.

Z-set — Non-linear material
& structure analysis suite 4.77

****post processing

***local post processing

**process neu sehitoglu

Lifetime is predicted via:

Nfatgue
f =

1

Dfatigue
=

1

2

[
∆γ

2ε′c

]1/c

where we have the coefficients eps f and c . If temperature dependent coefficients are given
for the fatigue part, the values calculated at the cycle average temperature are used.

Oxidation part:
The oxidation damage is calculated via the following equation:

Dox =
1

Noxide
f

=

[
hfδo

BφoxKp

]−1/β
2(∆εmech)2/β+1

ε̇1−a/β

Which uses a term for the critical oxide depth:

hf =
δ0

(∆εm)2 φox ε̇a

And an assumed parabolic oxidation rate:

Kp =
1

tc

∫ tc

0
Do exp

[−Q
RT (t)

]
dt

For the oxidation part the coefficients to be entered are D 0, Q, B, beta, delta 0, a, h cr .
Note that increasing D 0 or B increases the damage effect, bigger Q will emphasize an abrupt
change in high temperature degrading (but require a change in B to compensate), while
decreasing either delta 0 or h cr will increase the oxide damage. These later parameters
should be calibrated from primary metallurgical parameters from specialized oxidation tests.
If the model is being used empirically then there is quite a great deal of redundancy in these
parameters and the user should use caution.

Creep part:
The creep damage equation is:

Dcr =
1

N creep
f

= φcr

∫ tc

0
Ae−∆H/RT

[
α1J(σ) + α2

1
3Tr(σ)

K

]m
dt

with J(σ) being the von Mises equivalent stress. The creep damage will occur only in tensile
loading under uniaxial conditions if α1 = 1/3 and α2 = 1 (these are the defaults).

For the creep part the coefficients to be entered are alpha1, alpha2, A, K, m, dH which
should be obvious names from the above equation.

Output:
A large output set is generated by this processor, but with only one solution map for the
whole history analyzed. The following summarizes the output variables:

Nc the number of cycles detected for validation. There may be zones where the number is
incorrect in totally unloaded portions of a model.

Z-set — Non-linear material
& structure analysis suite 4.78

****post processing

***local post processing

**process neu sehitoglu

Nf, log Nf the life prediction based on the history so far, and log base 10 of that lifetime
for flatter contour plots.

D, Dox, Dcr the “damage” so far in the loading history, with 0 being undamaged, and 1
full failure. D is total, Dox oxidation part, Dcr the creep part.

extr Nf-1 extr log Nf-1 extrapolations of the lifetime to account for the trend in evolving
strain ranges.

extr N-1 the number of cycles forward in the extrapolation.

range ave average value of the plastic strain range (or effective range used for LCF calcu-
lations).

phi ox ave, phi cr ave ”phase factors” for the oxidation and creep effects as defined by
sehitoglu. zero means that effect is not considered because of the type of loading.

Syntax:
Basic options for this post are:

**process neu_sehitoglu

[*extrapolation_cycles n1 n2 n3]

[*extrapolation_sequence n1 n2 n3]

[*max_cycles maxc]

[*model_coef]

...

[*R R-value]

[*skip_first skip]

[*small_strain_rate sm-rate]

[*use_loading]

[*use_unloading]

*extrapolation cycles gives absolute cycle numbers which will be used to extrapolate
the trend in fatigue life. This is used when cycles are not yet stabilized.

*extrapolation sequence gives a series of cycles ending with the last detected cycle which
will be used to extrapolate the trend in fatigue life. This is used when cycles are not
yet stabilized.

*max cycles limits output cycle number as essentially infinite life. This is convenient to
limit the ranges for contour plotting.

*R sets the gas constant in case of different units. The default value is 8.3144e-3 KJ/(mol
K).

Z-set — Non-linear material
& structure analysis suite 4.79

****post processing

***local post processing

**process neu sehitoglu

*skip first causes the first skip cycles to be left from consideration in order to limit
damage prediction from large initial transient cycles.

*small strain rate gives a small strain rate which will be used in several locations to
limit divide by zero conditions, including the strain rate effect and prediction of the
constraint average.

*use loading indicates that only the loading portion of the strain range will be used for
fatigue. This would normally be detected as the heat-up side of a TMF cycle.

*use unloading indicates that only the unloading portion of the strain range will be used
for fatigue.

Additional controls are allowed for the CYCLE TOOL part. Currently these are3.

[*width wid]

[*major_tensor tens-name]

[*range_tensor tens-name]

*width gives a size control for detecting cycles. If too few cycles are detected the number is
probably too large; too many cycles detected and the size is probably too small (default
10−4). Units will be that of the major tensor.

*major tensor select the name of the variable to be used for cycle detection (default sig).

*range tensor select the name of the variable to be used for strain range calculations
(default eto).

For the TMF cycle tool (default) the following additional commands are available (however
*major tensor and range tensor are disallowed).

[*total_strain_for_range]

[*mechanical_strain_for_range]

[*temperature_unit celcius|fahrenheit|kevin]

*total strain for range detect the cycles based on the total strain. Note for fully
constrained test cases this will always be zero so the mechanical range should be used.
Conversely for basically unconstrained conditions using the total strain will be a better
choice.

*mechanical strain for range use the mechanical strain for the range calculation.

Note:
If the coefficients D 0, Q, B, beta are not entered the oxidation part will be skipped with-
out mention. Likewise if alpha1, alpha2, A, K are not entered the creep damage will be
skipped. Partially entering these coefficients will cause an error message.

3section to be separated in next version

Z-set — Non-linear material
& structure analysis suite 4.80

****post processing

***local post processing

**process neu sehitoglu

Example:
The following example is from Post test/INP/sehitoglu1.inp

***local_post_processing

**file integ

**elset ALL_ELEMENT

**output_number 1-99999999

**process neu_sehitoglu_evi

*total_strain_for_range

*model_coef

eps_f 0.20

c -0.64

b 1.0

sig0_E 0.0

xi_ox 1.0

xi_cr 0.20

a 0.0

D_0 2000.

Q 200.

B 7.00e-03

beta 1.5

delta_0 2.00e-07

h_cr 500.

alpha1 0.33

alpha2 1.0

A 1.00e+08

K temperature

1.00e+06 0.

1.00e+06 450.

20.0 600.

20.0 1200.

m 2.0

dH 200.

Z-set — Non-linear material
& structure analysis suite 4.81

****post processing

***local post processing

**process swt

**process swt

Description:
This process allows to calculate number of cycles to failure according to a unified strain-stress
fatigue model based on the Smith-Watson-Topper criterion.

The fatigue life is calculated by solving the following equation:

σeff = F (Nf)

where the effective stress σeff is calculated as a product of the stress and strain amplitudes
multiplied by a correction factor depending on the mean stress:

σeff =

√
E

∆σ

2

∆ε

2
f(

∆σ

2
, σ̄)

In the above formula E is the material Young’s modulus, while:

• ∆σ

2
is the multiaxial stress amplitude (measured in terms of the von mises J2 stress

invariant) as calculated by the **process range post-processor,

• a special treatment is needed for the calculation of the multiaxial strain amplitude
∆ε

2
in order to be compatible with the unixial case (because of nonzero strains that arise in
directions orthogonal to the uniaxial stress direction). The expression used to calculate
∆ε

2
is the following one:

∆ε

2
=

∆σ

2E
+

∆εp

2

where the plastic strain amplitude
∆εp

2
is computed either using the **process range

post-processing, or by means of a cyclic hardening relation ∆εp = f(∆σ), depending on
the option selected (see syntax). Note that when the range post-processor is used, the
distance measuring the amplitude in the deviatoric strain space is calculated by:

J2∗(ε∼
p) =

√
2

3
dev(ε∼

p) : dev(ε∼
p)

the
2

3
factor being used instead of the conventional

3

2
of the mises stress invariant, for

compatibility with the uniaxial case:

ε∼
p = (εp11, ε

p
22, ε

p
33, ε

p
12, ε

p
23, ε

p
31) = (εp11,−0.5εp11,−0.5εp11, 0, 0, 0)

such that:J2∗(ε∼
p) = εp11 in this case.

• in the multiaxial case, the mean stress value σ̄ is calculated as the mean trace of tensor
σ∼:

σ̄ =
1

2

[
max(Trace(σ∼)) + min(Trace(σ∼))

]
Z-set — Non-linear material
& structure analysis suite 4.82

****post processing

***local post processing

**process swt

• the mean stress correction factor f(
∆σ

2
, σ̄) is defined as the following function of σ̄:

– traction : σ̄ > 0

f(
∆σ

2
, σ̄) =

(
1 +

σ̄(
∆σ
2

))n
where n is a model coefficient.

– compression : σ̄ < 0

f(
∆σ

2
, σ̄) =

(
1− σ̄(

∆σ
2

))−1

which yields an effect similar to the one predicted by the Sines criterion, or al-

ternatively f(
∆σ

2
, σ̄) = 1 when the *skip_compression option is specified. The

latter option ignores any beneficial effect of a compressive stress, and may be too
pessimistic.

Several definitions of F (Nf) are allowed depending on the options:

• the first possibility (keyword *expression manson) is to derive F (Nf) from a prior
Manson-Coffin model calibration on symmetric cyclic tests (loading factor R=-1, σ̄ = 0).

∆ε

2
=

∆εp

2
+

∆εe

2
= AN−αf +BN−βf

which yields by replacing
∆εp

2
= AN−αf and

∆εe

2
= BN−βf in the effective stress formula:

F (Nf) = E
√
ABN−α−βf +B2N−2β

f

In that case model coefficients A, B, α, β are directly known from the Manson-Coffin
calibration, and the only additional coefficient still left to define is the n exponent
involved in the mean stress correction factor,

• a second possibility lets the user define an arbitrary expression for F (Nf), using the
keyword *expression <FUNCTION>, where <FUNCTION> is a valid function definition.
For example, an user-defined expression of F (Nf) equivalent to the manson option could
be specified by:

expression E(A*B*Nf^(-alpha-beta) + B*B*Nf^(-2.0*beta)^(0.5);

Note that it is mandatory that a variable named Nf or nf should be used in the function
definition. Other function coefficients are assumed to be model coefficients and should
be given in the post-processing material file.

Z-set — Non-linear material
& structure analysis suite 4.83

****post processing

***local post processing

**process swt

Introduction of a fatigue limit effect

An additional model coefficient εD may be used to add a fatigue limit effect when the
manson option is selected. In this case the Manson-Coffin model used during calibration is
rewritten:

∆ε

2
=

∆εp

2
+

∆εe

2
+ εD

such that Nf =∞ when
∆ε

2
< εD.

In that case the F (Nf) expression used in the swt model becomes:

F (Nf) = E

√
ABN−α−βf +B2N−2β

f + εD

(
2BN−βf +AN−αf + εD

)

Syntax:

**process swt

*var name sig

[*type scalar | tensor]

[*expression manson | func exp]

[*derivative func deriv]

*plastic_strain name ep

| *cyclic hardening function func hard

| *cyclic hardening file fname sig col eto col

[*precision prec]

[*iter iter]

[*skip_compression]

name sig is the name of the variable used to store the stress in the results file (one would
expect sig here).

The *expression command allows to define the F (Nf) function. Default is
*expression manson that defines a F (Nf) expression derived from a Manson-Coffin cali-
bration as detailed above. A user-defined expression may alternatively be given by means of
argument func exp.

The *derivative command allows to define the derivative
dF (Nf)

dNf
of F (Nf) in the

func deriv argument, and may be needed when a user defined function is given after
*expression. In this case a Newton-Raphson method is used to solve the σeff = F (Nf)
equation to calculate Nf . Otherwise, a slower dichotomy method is used. Note that the
*derivative command is not needed in the default *expression manson mode, and that
the Newton-Raphson method is always used in this case.

Z-set — Non-linear material
& structure analysis suite 4.84

****post processing

***local post processing

**process swt

The *plastic_strain command is used to define the name of the variable where the

plastic strain εp∼ is stored in the results files. In this case the
∆εp

2
amplitude needed in the

effective stress expression will be calculated by applying the range post-processor on the
variable specified by the argument name ep.

Alternative specification of
∆εp

2
calculation can be given by means of the

*cyclic_hardening function command. In that case a function
∆εp

2
= f(

∆σ

2
) is expected

for the func hard argument.

∆εp

2
may also be interpolated from cyclic hardening curve results by means of the

*cyclic_hardening file command. In this case argument fname is the name of the file
containg the cyclic hardening curve, and sig col, eto col are the column numbers in this file

used to store
∆σ

2
and

∆εp

2
repectively. Note that the half-amplitude is expected for both

stress and strain values.

The optional *precision command defines the precision required when solving the
σeff = F (Nf) by either dichotomy or Newton-Raphson. Default value is 10−4. Similarly,
the maximum number of iterations allowed may be given after *iter command (default is
500). In general, the Newton-Raphson method converges in at most a few dozens of iterations,
while the dichotomy method may need larger values depending on the precision required.

When the optional *skip_compression command is given, the mean stress correction

factor f(
∆σ

2
, σ̄) is set to 1.0, negative value of the mean stress σ̄.

Default output gives the number of cycles to failure in a variable named Nf, while the
effective stress is stored in a variable named ”name sig_swt”, obtained by concatenation of
the stress tensor name ”name sig” specified with the ”_swt” character string.

The optional *full_output command will add the following results to the output:

• the stress amplitude under the name ”name sig_alt”

• the average stress under the name ”name sig_ave”
where ”name sig” is the name of the stress tensor specified

• the elastic and plastic amplitudes in variables eel_alt and ein_alt

Example:

% standard definition using the default *expression manson option

**process swt

*var sig

*plastic_strain ev

*full_output

% The following syntax must be used in the material file in this case:

***post_processing_data

Z-set — Non-linear material
& structure analysis suite 4.85

****post processing

***local post processing

**process swt

**process swt

young 98000.00

alpha 0.7438 % mandatory Manson-Coffin coefficients

A 165.e-2

beta 0.0745

B 0.8015e-2

epsd 0.13e-2 % optional fatigue limit coefficient

n 0.65 % mandatory mean stress correction coefficient

% user definition of the F(Nf) function

**process swt

*var sig

*expression Au*Nf^(-au)+Bu*Nf^(-bu);

% optional derivative specification to allow faster newton-raphson resolution

*derivative -au*Au*Nf^(-au-1.0)-bu*Bu*Nf^(bu-1.0);

*plastic_strain ev

*full_output

% The following syntax must be used in the material file in this case:

% note the Au, au, Bu, bu coefficients needed depend of the user expression

***post_processing_data

**process swt

young 98000.00

au 0.7438

Au 165.e-2

bu 0.0745

Bu 0.8015e-2

n 0.65

% definition of a cyclic hardening function

**process swt

*var sig

% note that the function variable should be called "dsig"

*cyclic_hardening function (dsig/K)^m;

*full_output

% The following syntax must be used in the material file in this case:

% note the K, m coefficients needed depend on the *cyclic_hardening user definition

***post_processing_data

**process swt

young 98000.00

alpha 0.7438

A 165.e-2

beta 0.0745

B 0.8015e-2

epsd 0.13e-2

n 0.65

Z-set — Non-linear material
& structure analysis suite 4.86

****post processing

***local post processing

**process swt

K 1000.

m 0.07

Z-set — Non-linear material
& structure analysis suite 4.87

****post processing

***local post processing

**process trace

**process trace

Description:
This post-computation calculates the trace of a second order tensor. One value per node or
per Gauss point is added to the output records, for each solution map. The new variable
name is constructed using the tensor name suffixed with ii.

Syntax:

**process trace

*var name

Example:

% this will provide eplii

**process trace

*var epl

Z-set — Non-linear material
& structure analysis suite 4.88

****post processing

***local post processing

**process transform frame

**process transform frame

Description:
This post calculation calculates existing variables in a new local frame. Variables can be
either tensors or vectors.

Syntax:

**process transform_frame

*local_frame type

[*tensor_variables tensor var1 tensor var2 ...]

[*vector_variables vector var1 vector var2 ...]

[*suffix suffix]

[*output_variables name1 name2 ...]

*local frame specifies the local frame type. type can be euler, cartesian, cylindrical,
spherical or be specified by a z7p script. Refer to **local_frame (page 3.146) for more
details and syntax.

*tensor variables is the list of tensor variables to transform.

*vector variables is the list of vector variables to transform.

*suffix this suffix is added to the variable names (default is -rot);

*output variables can alternatively be specified to specify a different output name.

Example:

****post_processing

***local_post_processing

**file node

**nset ALL_NODE

**process transform_frame

*local_frame cylindrical

(1. 2.)

*tensor_variables sig eto

*vector_variables U

****return

Z-set — Non-linear material
& structure analysis suite 4.89

****post processing

***local post processing

**process tresca

**process tresca

Description:
This processor computes the Tresca criterion of a symmetric second order tensor. One output
variable is generated for each point at each map. The output variable name is constructed
from the input variable by adding tresca.

Syntax:

**process tresca

*var name

Example:

% this will provide sigtresca

**process tresca

*var sig

Z-set — Non-linear material
& structure analysis suite 4.90

****post processing

***local post processing

**process triax

**process triax

Description:
This computes the triaxiality of a symmetric second order tensor. The expression is as follows

SMEAN/SEQ

One value is produced per input point. The new variable name will be constructed from the
input variable by adding triax.

Syntax:

**process triax

*var name

Example:

% this will provide sigtriax

**process triax

*var sig

Z-set — Non-linear material
& structure analysis suite 4.91

****post processing

***global post processing

***global post processing

Description:
This command is used to define “global” post processing treatments to apply over sets of
nodes and integration points. Global post processors produce global values saved in the file
problem.post and/or in local (field) variables in the node or integration point files. This
distinction is indicated by the sign G for global variable producing processors, and L for local
variable producing processors. The reason for the distinction is that file data will be loaded
in a manner which may be less efficient than the local post processing methods.

Syntax:

***global_post_processing

[**deformed] GLOBAL OPTION

[**elset eset]

[**file file-key]

[**ipset ipset]

[**material_file fname]

[**nset nset]

[**output_number out-num-list]

[**process type]

...

[**undeformed] GLOBAL OPTION

The different sub-options define the geometrical groups of concern, the time period, materials
files, and the post treatments themselves. The majority of these options are exactly the
same as for ***local_post_processing. The following additional options are relevant to
the global post processing.

**deformed Use the mesh in its deformed configuration.

**undeformed Use the mesh in its undeformed configuration.

The following global post computations are available in the current release:

average average_around average_in_element

beremin beremin_max continue_curve

coordinates copy couple

crack_front curve cylindrical

extract2d3d format gil_sevillano

gp_vol gp_xyz gradient

Z-set — Non-linear material
& structure analysis suite 4.92

****post processing

***global post processing

input_damage max min

mm_localization momentum node_interpolation

selective_int static_torsor surface_normals

test_gp torque transform_frame

volume volume_above weibull

z7p

Z-set — Non-linear material
& structure analysis suite 4.93

****post processing

***global post processing

**process anisotropic failure

**process anisotropic failure

Description:
This process is an extension of the weibull or batdorf models to the case of anisotropic brittle
materials. A probability of failure P if is evaluated on an arbitrary number of characteristic
planes for the material (eg. particular cristallographic planes), and the total probability of
failure Pf is then computed in the following way:

Pf = 1−
∏
i

(
1− P if

)
A particular plane i is characterized by its normal vector ni and the weibull model pa-

rameters (strength function σiu(θ) and modulus m(θ)) depend on an angle θ that defines a
particular direction in this plane:

zi = ni normal to plane i

xi

yi

θ Plane i

The probability of failure P if associated to failure on plane i is then calculated by means
of one of the following equations:

• Weibull mode:

P if = 1 − exp

(
−
∫
V

dV

V0

1

θmax

∫ θmax

0

(
σe(θ)

σiu(θ)

)mi(θ)
dθ

)

In the above equation, the equivalent stress σe(θ) is chosen as the normal stress in
direction θ:

σe(θ) = dθ · σ∼ · dθ

where σ∼ is the stress tensor at the current integration point.

The modulus mi(θ) and the scaling function σiu(θ) are arbitrary functions of θ that
should be defined by the user. Coefficients of this function are automatically added as
model coefficients by the post-processor, and need to be given in the material file. For
example, one can express σi0(θ) in term of the strength s0 (θ = 0) and s90 (θ = π

2) in
the following way:

σiu(θ) = s0 cos2(θ) + s90 sin2 (θ)

with material coefficients s0 and s90 declared in the material file.

Z-set — Non-linear material
& structure analysis suite 4.94

****post processing

***global post processing

**process anisotropic failure

• Batdorf mode:
This mode is a slight modification of the previous one, where Batdorf-type statistics are
preferred (integration over all possible crack sizes, characterized by their critical stres
σc):

P if = 1 − exp

(
−
∫
V

dV

V0

2

π

∫ π
2

0

{∫ σI

0
P (σc, θ) g (σc, σe(θ)) dσc

}
dθ

)

where:

? The equivalent stress σe(θ) is taken as the normal stress in direction θ (same
definition as in the previous mode)

? P (σc, θ) is the crack density with critical stress σc. As in the conventional batdorf
model this quantity is expressed as a power law, but depends on θ by means of the
anisotropic scale parameter σiu(θ):

P (σc, θ) =

(
σc

σiu(θ)

)mi
? g (σc, σe(θ)) is equal to 1 when the equivalent stress is greater than the critical

stress σc:
g (σc, σe(θ)) = 1 if σe(θ) >= σc , else g (σc, σe(θ)) = 0

• Full Batdorf mode:

This mode fully generalizes the Batdorf approach to the anisotropic case, and allows
some flexibility in the choice of the equivalent stress σe. Integration is taken over the
whole space, using 2 angles θ and φ as represented in the following figure, where:

–
−→
d (θ) is the direction at angle θ in the cristallographic plane as before,

– φ is the angle between the z axis (normal to the cristallographic plane) and a

particular −→n (θ, φ) direction in plane (
−→
d (θ), z)

z = n normal to plane p

x

y

θ Plane p

−→n (θ,φ)

−→
d (θ)

φ

Z-set — Non-linear material
& structure analysis suite 4.95

****post processing

***global post processing

**process anisotropic failure

The probability of failure is then computed by the following equation:

Pf = 1 − exp

[
−
∫
V

1

V0
dV

∫ σI

0
dσc

{
1

2π

∫ π

0
dθ

∫ π

0
P (σc, θ, φ) g(σe(θ, φ), σc) sin(φ) dφ

}]
where:

– for each gauss point, integration is performed on the half space only (which corre-
spond to a solid angle of 2π) because of symmetry of the equivalent stress σe(θ, φ)

– P (σc, θ, φ) is the density of cracks having a critical stress σc:

P (σc, θ, φ) =
1

σu(θ, φ)

(
σc

σu(θ, φ)

)m(θ,φ)

where coefficients σu and m depend on the angles (θ, φ) defining the current direc-
tion −→n (θ, φ).

– g(σe(θ, φ), σc) is equal to 1 when the equivalent stress is higher than the crack
critical stress:

g(σe(θ, φ), σc) = 1 if σe(θ, φ) > σc , else g(σe(θ, φ), σc) = 0

– The equivalent stress σe(θ, φ) is allowed to depend both on the normal stress in
direction −→n (θ, φ) and the norm of the shear stress vector acting on the facet normal
to −→n :

σn(θ, φ) = −→n (θ, φ) · σ∼ · −→n (θ, φ)
−→τ (θ, φ) = σ∼ · −→n (θ, φ) − σn(θ, φ) −→n (θ, φ)

τ(θ, φ) = ‖−→τ (θ, φ)‖
The implementation then allows to choose between several expression for the equiv-
alent stress σe:

? normal stress (”ns”) : σe(θ, φ) = σn(θ, φ)

? critical energy (”ce”) : σe(θ, φ) =
√
σn(θ, φ)2 + τ(θ, φ)2

? maximal strength (”ms”) : σe(θ, φ) = 1
2

(
σn(θ, φ) +

√
σn(θ, φ)2 + τ(θ, φ)2

)
Syntax:

**process anisotropic_failure

*var name

[*mode weibull | batdorf | [full_batdorf (ns | ce | ms)]]

*plane

[tmin tmin]

[tmax tmax]

normal <VECTOR>

function <FUNCTION>

Z-set — Non-linear material
& structure analysis suite 4.96

****post processing

***global post processing

**process anisotropic failure

[m_function <FUNCTION>]

[phi_function <FUNCTION>]

[phi_m_function <FUNCTION>]

[*plane

...]

[*orientation | *local_frame <LOCAL_FRAME>]

[*nb_constant_step steps]

[*nb_sigc_step sc steps]

[*precision eps]

name is the name of the variable used to store the stress in the results file (one would
expect sig here)

The *mode command allows to select the model used to calculate the probability of failure.
Possible options, as detailed before, are: weibull (default), batdorf or full_batdorf. In
the full_batdorf mode an additional keyword is needed to define the choice of the equivalent
stress expression. As decribed before, candidates are: ns (normal stress), ce (critical energy)
or ms (maximum strength).

The *plane command is used to define the material (or crystallographic) planes charac-
terizing anisotropy of the failure properties. Note that as many *planes definitions as needed
may be included. The total probability of failure is then computed as:

Pf = 1−
∏
i

(
1− P if

)
where P if is the probability of failure computed on a particular plane (numbered i in the
previous equation). Subcommands of the *plane keyword are the following ones:

• the optional commands tmin and tmax allow to define the bounds (tmin and tmax values
in degrees) for the θ angle integration:

Pf = 1− exp
{
−
∫
V

(
1

θmax − θmin

∫ θmax

θmin

... dθ

)
dV

}
Default values are tmin=0 and tmax=90.

• a VECTOR object is expected after the normal keyword to define the normal to the
current plane.

*plane

normal (0.0 0.0 1.0)

• a FUNCTION object is expected after the function keyword to define the θ dependence
of the strength weibull parameter σu(θ).

Z-set — Non-linear material
& structure analysis suite 4.97

****post processing

***global post processing

**process anisotropic failure

*plane

function s0*(cos(theta)^2.0)+s90*(sin(theta)^2.0);

As is conventional in Zebulon input files, the function definition must be ended by a
”;” character, and all libc mathematical functions are allowed (sin, cos, sinh, log, exp,
..). Note that in this particular context a ”theta” character string is expected in the
definition for the name of the function variable. All other parameters in the function
definition are assumed to be coefficients (eg. s0 and s90 in the previous example) and
need to be given in the material file.

• an optional m_function keyword can be used to declare a dependence of the m weibull
modulus in term of the direction in the current plane. Conventions for the function
definition are the same as in the previous case. Without this option, m is assumed to
be a constant in all directions. The name of the coefficients expected in the material
file are then the following one: m in the case of a single plane, or m1, m2 ... when several
planes are declared.

• In the full_batdorf mode only, additional function definitions are needed to specify
the values of the σu and m parameters in a particular (θ, φ) direction. Corresponding
keywords are phi_function (for σ0) and phi_m_function (for m).

*plane

function s0*(cos(theta)^2.0)+s90*(sin(theta)^2.0);

phi_function stheta*(sin(phi)^2) + sc*(cos(phi)^2);

Functions in the previous example will define σu(θ, φ) in the following way:

σu(θ) = s0 cos2(θ) + s90 sin2(θ)

σu(θ, φ) = σu(θ) sin2(φ) + sc cos2(φ)

where stheta is a predefined name denoting the result of the σ0 function in a (θ, φ = 0)
direction, and s0, s90, sc are model coefficients that need to be declared in the material
file. As before, those coefficients are arbitrarily named by the user, and automatically
added to the model definition after parsing the function expressions.

The optional command *orientation or *local_frame command allows to transform
the stress tensor σ∼ from the global frame to a local material frame prior to volume integra-
tion. Such a material frame is in general more convenient to define the anisotropic failure
coefficients.

The default method used to perform integration over the θ angle is a simple constant
step method with a midpoint rule. The default number of steps is 20, and this value can be
modified by means of the *nb_constant_step command.

Similarly, integration on the critical stress σc in the batdorf and full_batdorf modes is
done by a constant step method and the number of steps involved can be specified by means
of the *nb_sigc_step command (default value is 20).

Z-set — Non-linear material
& structure analysis suite 4.98

****post processing

***global post processing

**process anisotropic failure

Note that when of value of 0 is used as argument of the previous two commands, a
second-order runge-kutta method will be used to perform the corresponding integrations.
This method is more precise and will automatically adapt the size of the steps to verify a
target integration error. However, CPU times may be too long for practical applications,
in particular in the batdorf or full_batdorf modes, and this option should only be used
in debug mode to check the implementation against analytical solutions. Experience has
shown that a constant step method with a default value of 20 steps is in general sufficient
to provide reasonable accuracy. However, if runge-kutta integration is defined (by setting
*nb_constant_step 0 and/or *nb_sigc_step 0) the command *precision eps may to set
the precision of the runge-kutta method (default value is eps=1.e-4).

For each plane i the probability of failure P iip associated to each integration point is stored
in the results file under the name Pname_planei, where name is the variable name (specified
by the *var command) and i the plane index. The result of the volume integration of the
probability of failure on each plane, and the total Pf for the complete set of planes is written
in the .post file.

Example:

**file integ % mandatory

**process anisotropic_failure

*mode weibull

*var sig

*plane

tmin 0.0 tmax 90.0

normal (0.0 0.0 1.0)

function sm*(cos(3.0*theta)^2.0)+sa*(sin(3.0*theta)^2.0);

m_function mm*(cos(3.0*theta)^2.0)+ma*(sin(3.0*theta)^2.0);

*plane

tmin 0.0 tmax 90.0

normal (0.0 1.0 0.0)

function sc*(cos(theta)^2)+sm*(sin(theta)^2);

m_function mc*(cos(theta)^2.0)+mm*(sin(theta)^2.0);

*plane

tmin 0.0 tmax 90.0

normal (1.0 0.0 0.0)

function sa*(cos(theta)^2)+sc*(sin(theta)^2);

m_function ma*(cos(theta)^2.0)+mc*(sin(theta)^2.0);

% material file

***post_processing_data

**process anisotropic_failure

V0 2.0

mm 4.0

ma 3.5

mc 3.2

sm 880.0

Z-set — Non-linear material
& structure analysis suite 4.99

****post processing

***global post processing

**process anisotropic failure

sa 1200.0

sc 2000.0

***return

Example:

**file integ % mandatory

**process anisotropic_failure

*mode full_batdorf ms

*var sig

*plane % m,a

tmin 0.0 tmax 90.0

normal (0.0 0.0 1.0)

function sm*(cos(3.0*theta)^2.0)+sa*(sin(3.0*theta)^2.0);

m_function mm*(cos(3.0*theta)^2.0)+ma*(sin(3.0*theta)^2.0);

phi_function stheta*(sin(phi)^2) + sc*(cos(phi)^2);

phi_m_function mtheta*(sin(phi)^2) + mc*(cos(phi)^2);

% material file

***post_processing_data

**process anisotropic_failure

V0 2.0

mm 4.0

ma 3.5

mc 3.2

sm 880.0

sa 1200.0

sc 2000.0

***return

Z-set — Non-linear material
& structure analysis suite 4.100

****post processing

***global post processing

**process average

**process average

Description:
This post computation calculates the spatial average of variables specified over a group of
elements (elset) for each solution step. The average of x is defined as:

x̄ =
1

V

∫
V
xdV

Syntax:

**process average

*list_var name1 ... nameN

name1, ... nameN are scalar values to be averaged.

Example:

**process average

*list_var sig11 epcum sigmises

Z-set — Non-linear material
& structure analysis suite 4.101

****post processing

***global post processing

**process momentum

**process momentum

Description:
This post calculation is used to find then n-th order moment of specified variables over a
group of elements (elset) at each solution time. The moment of order n > 1 of x is defined
as:

σn(x) =

(
1

V

∫
V

(x− x̄)n dV

)1/n

Syntax:

**process momentum

*order n

*list_var name1 ... nameN

n is the order (integer value), and name1, ... nameN are scalar variable names to treat.

Example:
Example:

**process momentum

*order 2

*list_var sig11 epcum sigmises

Z-set — Non-linear material
& structure analysis suite 4.102

****post processing

***global post processing

**process average around

**process average around

Description:
This post processor calculates an average around each integration point in an element set and
assigns this average value to each integration point.

Syntax:

**process average_around

*length value

*list_var name1 ... nameN

value is a real value to indicating the distance to take into account around each integration
point to make the average. name1, ... nameN are the scalar variable names to average. The
output variable names are generated by adding the prefix aa_ to each input variable name.

�Symmetries are not taken into account. The method is not valid for axisymmetric geome-
tries.

Example:

% this will provide aa_epcum

**process average_around

*list_var epcum

*length 1.5

Z-set — Non-linear material
& structure analysis suite 4.103

****post processing

***global post processing

**process average in ele

**process average in element

Description:
This post processor calculates the average of the specified variables in each element of an
elset, and assigns the mean value to each integration point.

Syntax:

**process average_in_element

*list_var name1 ... nameN

where name1, ... nameN are the scalar variables to average. The output names are created
by adding the prefix ae_ to each variable.

Example:

% this will provide ae_epcum

**process average_in_element

*list_var epcum

Z-set — Non-linear material
& structure analysis suite 4.104

****post processing

***global post processing

**process batdorf

**process batdorf

Description:
This process computes a probability of failure for brittle materials according to the Batdorf
model. This model is an extension of the Weibull model that may be more relevant in the
case of multiaxial stress states, and also allows some flexibility as regards of the definition of
the equivalent stress causing failure.

The probability of failure Pf is expressed in the following form;

Pf = 1− exp
(
−
∫
V
dV

∫ σ1

0
θ(σc)

Ω

4π
(σc) dσc

)
where:

• the integration
∫ σ1

0 ... dσc is computed over all possible crack sizes, characterized by the
critical stress σc (σ1 is the maximum principal stress et the current integration point),

• θ(σc) is the density of cracks having σc as critical stress
A classical power law is chosen for θ(σc):

θ(σc) =
1

V0 σu

〈
σc − σ0

σu

〉m
where V0, σu, σ0 and m are material parameters.

• Ω(σc) is the solid angle of the region of space where the equivalent stress σe is higher
than the critical stress σc
(Ω = 4π for the whole space around the current integration point in the volume)

To evaluate the solid angle Ω(σc) the following coordinate system that depends on the
principal stress values σ1, σ2, σ3 (σ3 <= σ2 <= σ1) at the current integration point is
defined:

θ

φ

σ1

σ2

σ3

and the following expression is used to calculate Ω(σc):
Ω(σc)

4π
=

1

2π

∫ π

0

(∫ π

0
g(σe(θ, φ), σc) sinφ dφ

)
dθ

Z-set — Non-linear material
& structure analysis suite 4.105

****post processing

***global post processing

**process batdorf

In the previous equation g(σe(θ, φ), σc) indicates if the equivalent stress σe is greater
than the critical stress σc:
g(σe(θ, φ), σc) = 1 if σe(θ, φ) >= σc , else g(σe(θ, φ), σc) = 0

• Various expression of the equivalent stress σe may be chosen:

• normal stress mode (”ns”) : σe = σn

• critical energy release rate mode (”ce”) : σe =
√
σ2
n + τ2

• maximal strength mode (”ms”) : σe = 1
2

(
σn +

√
σ2
n + τ2

)
where σn an τ are the normal and shear stress components on a facet with normal
~n(θ, φ). In the coordinate system of the above figure, the following expressions are used
to evaluate σn and τ from the principal stress values:

σn = σ1 cos
2θ sin2φ + σ2 sin

2θ sin2φ + σ3 cos
2φ

σ2
n + τ2 = σ2

1 cos
2θ sin2φ + σ2

2 sin
2θ sin2φ + σ2

3 cos
2φ

Syntax:

**process batdorf

*var name

[*mode ns | ce | ms]

[*steps st]

[*precision eps]

[*nb_constant_step const]

[*force_numeric]

name is the name of the variable used to store the stress in the results file (one would
expect sig here)

The *mode command allows to select the type of equivalent stress used in the model as
defined above. Mode ns (normal stress) is the default.

The optional command *steps is used to defined the number of sub-steps involved in
runge-kutta integrations of the various integrals defined above. The default value is st=4 (eg.
4 substeps of π

4 radians for an integration from 0 to π).

eps is the runge-kutta precision required for the previous integrations. Default value is
eps=1.e-4, that may be decreased to 1.e − 3 for faster integration at the expense of a lower
precision of the failure probabilities calculated by the post-processor.

In the ns and ce modes, analytical expressions can be derived and are used to accelerate
the calculation of the Ω(σc) critical solid angle. In that case a double integration is needed
(integration over σc and θ only) to evaluate Ω. In the ms mode, no analytical acceleration
is possible, and an additional integration over angle φ is needed. Use of runge-kutta for

Z-set — Non-linear material
& structure analysis suite 4.106

****post processing

***global post processing

**process batdorf

this inner integration is not manageable for efficiency reasons, and a simple constant step
integration method is preferred in this case. The *nb_constant_step optional command
may then be used to specify the number of sub-steps needed for φ integration. The default
value is const=20.

The optional command *force_numeric may be used in the ns and ce mode to replace
the previous analytical φ integration by the numeric constant step method.

The probability of failure Pip associated to each integration point:

Pip =

∫ σ1

0
θ(σc)

Ω

4π
(σc) dσc

is stored in the results file under a name constructed by adding ” ba” to the variable name,
while the total probability Pf obtained after integration on the volume of the component is
written in the .post file.

Example:

**file integ % mandatory

**process batdorf

*mode ns

*var sig

% material file

**process batdorf

V0 1.0

sigma_u 200.0

m 3.0

Z-set — Non-linear material
& structure analysis suite 4.107

****post processing

***global post processing

**process beremin

**process beremin

Description:
This command performs the Weibull stress and the rupture probability according to the
Beremin model (see Beremin F.M., “A local criterion for cleavage fracture of a nuclear pressure
vessel steel”, Met. Trans. A, 14A, 2277–2287 (1983)). The Weibull stress is defined as:

σW =

(
1

V0

∫
V, p>pc

σmI dV

)1/m

where V0, pc and m are material parameters. σI is the stress tensor maximum principle
stress. The integral is taken over the volume where the plastic strain is higher that a critical
value pc. The rupture probability Pr is given by:

Pr = 1− exp

(
−
(
σW
σu

)m)
= 1− exp

(
− 1

V0

∫
V, p>pc

(
σI
σu

)m
dV

)
σu is a material parameter.

Syntax:

**process beremin

*stress name1

*strain name2

name1 is the name of the stress tensor and name2 the name of the inelastic deformation
measure (scalar). The material file must contain the values V0, pc m and σu.

Example:

% input file

**process beremin

*stress sig

*strain epcum

% material file

**process beremin

V0 10.

m 20.

sigma_u 1200.

p_c 0.01

Z-set — Non-linear material
& structure analysis suite 4.108

****post processing

***global post processing

**process clip image

**process clip image

Description:
This command is used to generate maps of Gauss point variables inside a predefined cut
plane. Produced images are 256 colors gif files where the value for each pixel is the value of
the closest Gauss point. It is also possible to obtain the mean of the element Gauss point
values. This process can be quite long as the image is generated finding the element location
of each pixel in the structure.

Syntax:

**process clip_image

*list_var var1 var2 ...

*output output-file-name

*P0 vector

*P1 vector

*P2 vector

[*ortho ortho-dir-value]

[*step spatial-step-value]

[*dimx dimx-value]

[*dimy dimy-value]

[*color_map color-map-name]

[*min_max mode]

[*mini min-value]

[*maxi max-value]

[*values type]

[*transparency background-color]

[*draw_limits_between_elsets]

[*elsets_start_with prefix]

[*latex orientation]

*list var specifies Gauss point variables to be plotted.

*output is used to specify the gif output file name.

*P0, P1, P2 specify points describing the cut plane: image will be plotted for all P =
P0 + αP0P1 + β P0P2 with (α, β) ∈ [0, 1]2.

Z-set — Non-linear material
& structure analysis suite 4.109

****post processing

***global post processing

**process clip image

*ortho is used to impose an orthogonal (P0,P1,P2) base. If value 1 is given a new P2 point
will be searched as the projection of the orginal P2 point on a direction normal to P0P1.
If value 2 is given, the same process if done for P1 point respecting P0P2 direction.

*step is used to impose the spatial pitch of generated image pixels.

*dimx, dimy are used to imposed the number of pixel used in P0P1 and P0P2 direction
(length and height of the gif image). If only one paramter is set, the other will be
computed as to respect a spatial aspect ratio. Note that at least one of the commands
step dimx dimy must be specified.

*color map specifies the color map that will be employed, choice are one of: default, bone,
broken, BW, BW2, cool, copper, hot, HSV, inv default, inverse, jet, Low white, pink,
prism, PS-default, White to dark (same as those in the Zmaster interface).

*min max is used to specify how the scalebar limits are determined and can be manual or
auto. Default behaviour is auto. If manual mode is selected, user has to provide min
and max values thanks to the *mini and *maxi keywords.

*values is used to specify if the values are taken as closest Gauss point
(integration_point, which is the default behavior), as the mean of the element Gauss
point values (average_in_element) or as the values of the continuous field which has
been extrapolated to the nodes from the Gauss points values (at the global scale, not
element-wise) and then interpolated (interp).

*transparency is used to specify the background color in order to produce transparent
pixels when no element are found. It can be white or black.

*draw limits between elsets print limits between elsets with background color (useful
to visualize grain boundaries inside polycrystals).

*elsets start with is used specify what is the prefix of the involved elsets to print limits
between. By defaults, all elsets are involved.

*latex requires portrait or landscape modifier. This command will generate latex and
pdf files containing generated images with color bars, if a valid imagemagick and latex
environment is present.

Example:

**process clip_image

*list_var sig23

*output cuts

*P0 (-1. -1. 0.)

*P1 (41. 0. 4.)

*P2 (0. 41. 4.)

*dimx 1000

*ortho 1

*latex portrait

Z-set — Non-linear material
& structure analysis suite 4.110

****post processing

***global post processing

**process coordinates

**process coordinates

Description:
This post-processing is used to produce coordinates (X,Y, Z) as field variables; they can then
be used by other post-processings. A “node id” field is also produced (resp. “element id” if
the process is applied on an integ file).

Syntax:

**process coordinates

[*prefix prefix]

Output fields are named X, Y, Z and id, optionnaly prefixed by prefix.

Z-set — Non-linear material
& structure analysis suite 4.111

****post processing

***global post processing

**process format

**process format

Description:
This post processor is used to produce an “export file” containing the specified variables for
all the maps being run. The output file is a formatted ASCII file. The variables should exist
in the file specified by the **file command (see page 4.26). For instance, the command
*list var U1 should not be given with **file integ. Note: this post processor also exists
for ***local post processing, with similar options (see page 4.50).

Syntax:

**process format

*file file

*list_var name1 ... nameN

[*precision digits]

[*optimizer]

[*blank_line]

[*write_nodal_coordinates coord | coord0 | none]

[*write_gp_coordinates]

where file denotes the name of the output file, and name1, ..., nameN is a list of scalar
variable names to output. For each map, the values at all locations (nodes, integration
points) are stored. The option *optimizer inhibits the writing of the output lines containing
the character string # === time followed by the time associated with the current map, and
the character string listing all variables. The option *precision determines the number of
digits with which the results will be written (default is 10). The option *blank_line writes
an empty line between each output map. Some plotting programs, for instance gnuplot, may
need this.

For variables associated to nodes, it is possible to write out the nodal coordinates as
well by using the *write_nodal_coordinates option. This options takes as argument either
coord to indicate that the current coordinates should be written, or coord0 to indicate
that the initial coordinates should be written. The default value none indicates that the
nodal coordinates should not be written. Note: currently this option does not exist for the
***local post processing **format version of this command.

For integrated variables, it is also possible to write out the Gauss point coordinates, by
specifying the *write_gp_coordinates option.

Z-set — Non-linear material
& structure analysis suite 4.112

****post processing

***global post processing

**process hot spot

**process hot spot

Description:
This post processor is used to find locations which are local maxima or mimima of a given vari-
able, and within a specified range, but isolated from other peaks by a given radius. This post
computation should be useful for automating fatigue or critical stress analysis when meshes
and loading conditions are often changing (see for example the usage with cycle projection

on page 4.38).

Syntax:

**process hot_spot

*format fmt-string

*function FUNCTION

*max_val max

*min_val min

*minimum

*num fname

*radius rad

*screen_output

*variable name

*write_nodes fname

The following summarizes the different commands and their parameters:

*format is used to format the screen output for aesthetic value to the user. The com-
mand reads the characters remaining on the same line and uses that as a printf style
formatting.

*function applies a FUNCTION to the selected field values before evaluating the hot spot
condition (remember the semicolon after the function declaration).

*max val specifies a real value for the maximum values to be considered. This can be used
to truncate the analysis to regions of reasonable scale.

*min val specifies a real value for the minimum values to be considered. An example use is
when regions of a structure do not have a fatigue life prediction (and therefore values of
zero), but we are interested in the minimum locations with values over 10 for example.

*minimum is a switch to indicate that we want minimum values as the hot spot. The default
is to search for maximum absolute values.

*num specifies an integer for the number of values to report.

Z-set — Non-linear material
& structure analysis suite 4.113

****post processing

***global post processing

**process hot spot

*radius specifies a real value for the spatial radius separating the hot spot locations.

*variable specifies the scalar variable of interest. This can of course be a derived variable
coming from previous post processing operations.

*write nodes is used to give a file name where a Zmesh compatible node set will be listed
in order of the num hot spot points.

Note:
This command currently applies to nodal data only.

Example:
The following example is from the test case hot spot.inp in test/Post test/INP.

***global_post_processing

**process hot_spot

*radius 5.

*variable X

*num 2

*function -1.0*x;

*screen_output

Because we asked for *screen output the following summary is printed to the standard
out (and .msgp file). At the first timestep (t=0) the field is uniform so the first 2 nodes
respecting the zone rule are printed. In the following the field is just scaled so the location
results are the same. That would of course not be the case in a general FEA analysis.

+++++ HOTSPOT ANALYSIS X +++++

Time:0.000000

1 -2.00e-01

7 -2.00e-01

running : 25 %

+++++ HOTSPOT ANALYSIS X +++++

Time:1.000000

152 -2.80e+00

309 -2.15e+00

running : 50 %

+++++ HOTSPOT ANALYSIS X +++++

Time:2.000000

152 -2.10e+00

309 -1.61e+00

running : 75 %

+++++ HOTSPOT ANALYSIS X +++++

Time:3.000000

152 -1.40e+00

309 -1.08e+00

Z-set — Non-linear material
& structure analysis suite 4.114

****post processing

***global post processing

**process max

**process max

Description:
This post-processor gives the maximal value of the specified variables for a group of elements
(elset).

Syntax:

**process max

*list_var name1 ... nameN

name1, ... nameN are scalar variable names.

Example:

**process max

*list_var sig11 sig22

Z-set — Non-linear material
& structure analysis suite 4.115

****post processing

***global post processing

**process min

**process min

Description:
This post-processor gives the minimum value of the specified variables for a group of elements
(elset).

Syntax:

**process min

*list_var name1 ... nameN

name1, ... nameN are scalar variable names.

Example:

**process mises

*var sig

**process min

*list_var sigmises

Z-set — Non-linear material
& structure analysis suite 4.116

****post processing

***global post processing

**process node extrapola

**process node extrapolation

Description:
This post-computation extrapolates integration point data to either the nodes (CTNOD for-
mat), or to the element nodes (CTELE).

Syntax:

**process node_extrapolation

*list_var name1 ... nameN

[*output_var o-name1 ... o-nameN]

name1, ... , nameN are the scalar variable names to treat.

The input data is read in the results files problem.integ. The calculated results are stored
in the file problem.ctnodp.

These output variables are named gpname1, ... gpnameN, or o-name1 ... o-nameN if they
were specified.

Example:

% Generates the variable gpsig11 at nodes

% from the sig11 variable in the .integ file

**file integ

**process node_extrapolation

*list_var sig11

Z-set — Non-linear material
& structure analysis suite 4.117

****post processing

***global post processing

**process node interpola

**process node interpolation

Description:
This post-computation interpolates nodal variables at the Gauss points.

Syntax:

**process node_interpolation

*list_var name1 ... nameN

[*output_var o-name1 ... o-nameN]

name1, ... , nameN are the scalar variable names to treat.

The input data is read in the results files problem.node or problem.ctnod (**file node).
The calculated results are stored in the file problem.integp.

These variables are named gpname1, ... gpnameN.

Example:

% provides gptemperature at the Gauss points

% from the temperature in .node file

**file node

**process node_interpolation

*list_var temperature

Z-set — Non-linear material
& structure analysis suite 4.118

****post processing

***global post processing

**process relocalised post

**process relocalised post

Description:
This post computation interpolates the specified DOFs at specified coordinates.

Syntax:

**process relocalised_post

*variables list-of-variables

[*station vector]

[*station_file infile]

[*output_file outfile]

[*tolerance value]

[*locator_type locator]

*variables is the list of DOFs to output.

*station is used if a single point is selected ; use *station_file if more than one point
is required.

*station file is the name of an Ascii file containing coordinates of desired output points.
Options *station and *station_file are mutually exclusive.

*output file specifies in which file output should be given. If it is omitted, results are
printed on screen. If the filename ends with .vtk, the output file will be in vtk format;
otherwise, standard Ascii file format suited to gnuplot is used.

*tolerance is passed to the element locator, to allow slightly out-of-elements point local-
ization. Default is 0.

*locator type is the localization method. It defaults to bb_tree (currently the optimal
method available in Z-set).

Example:

****post_processing

***global_post_processing

**file node

% **at 1. 30. 365. 3650. 36500.

**output_number 0-999

**process relocalised_post

*station_file GPS_stations.dat

*variables U1 U2 U3

Z-set — Non-linear material
& structure analysis suite 4.119

****post processing

***global post processing

**process relocalised post

*output_file GPS-out.vtk

*tolerance 1. % in distance unit

****return

where the station file looks like (note that for convenience, all text after the 3rd column is
ignored):

X Y Z site

-1.129764e+06 6.229049e+06 7.156934e+05 ARAU

-1.155688e+06 6.239179e+06 5.715508e+05 BABH

-1.834799e+06 6.058418e+06 -7.202233e+05 BAKO

-9.878078e+05 6.183675e+06 1.173047e+06 BANH

#[etc...]

Z-set — Non-linear material
& structure analysis suite 4.120

****post processing

***global post processing

**process static torsor

**process static torsor

Description:
This post compute the static torsor equivalent to the sum of every nodal forces over a nset
for each solution step. The equivalent static torsor is defined as:

{
T
}
O

=


∑
i∈nset

~Fi∑
i∈nset

~OOi ∧ ~Fi


O

Syntax:

**process average

*point vector

*file file

where vector is the position where the momentum is computed (O). The output gives the
coords of point O, the 3 components of the resultant and the 3 components of the momentum
for each time step. The output file is named file.

Example:

***global_post_processing

**nset top

**file node

**process static_torsor

*point (1. 0.5 0.5)

*file torsor.dat

Z-set — Non-linear material
& structure analysis suite 4.121

****post processing

***global post processing

**process surface normals

**process surface normals

Description:
This post processor computes the outer-pointing normals at nodes in the specified nset, and
generates associated nodal fields. It currently works in 3D only.

Defining a normal direction at a node on a ridge is naturally ambiguous. Each node receives
a contribution of its attached elements, if all nodes of the elements are in the specified nset.
Thus, on ridges the normal is averaged over adjacent elements. Restricting the computation
to a smooth subset of the surface will usually generate the desired field.

Syntax:

**surface_normals

[*prefix prefix]

prefix is used to name the output variable. Its default value is N so that normal vector
components are N1, N2 and N3.

Example:

% This post processing calculates outer-pointing

% heat flux from a thermal calculation

****post_processing

***global_post_processing

**file node

**nset interior

**process surface_normals

*prefix N

% Can be visualized in paraview with this calculator:

% N1*iHat+N2*jHat+N3*kHat

***local_post_processing

**file node

**nset interior

**process function

*expression q1*N1 + q2*N2 + q3*N3 ;

*output normalflux

****return

Z-set — Non-linear material
& structure analysis suite 4.122

****post processing

***global post processing

**process volume

**process volume

Description:
Calculate the volume of a group of elements (elset).

Syntax:

**process volume

Example:

****post_processing

***precision 3

***data_source mesh_only

**format Z7

**open mymesh.geof

**maps 1.

***global_post_processing

**file integ

%

% volume of the whole structure

%

**elset ALL_ELEMENT

**process volume

%

% volume of a part

%

**elset PART1

**process volume

****return

Z-set — Non-linear material
& structure analysis suite 4.123

****post processing

***global post processing

**process volume above

**process volume above

Description:
The volume above processor is used to calculate the volume of elements of the active element
set for which the value of the specified variable is greater than a criterion fixed by the used.

The result can be normalized to find the relative percentage of volume meeting the given
criterion.

Syntax:

**process volume_above

*var name

*threshold value

*normalize

where name is the name of a scalar variable. value is a real (floating point) value indicating
the criterion to consider. With the option normalize the given result corresponds to the total
volume fraction of elements meeting the criterion.

Example:

**process volume_above

*var epcum

*threshold 1.

*normalize

Z-set — Non-linear material
& structure analysis suite 4.124

****post processing

***global post processing

**process weibull

**process weibull

Description:
This post computation provides the means for doing a Weibull analysis on a structure. Two
modes of operation are available:

eigenstress

σ′ =

(
σM1 − σ0

σu

)m
independent

σ′ =

(
σM1 − σ0

σu

)m
+

(
σM2 − σ0

σu

)m
+

(
σM3 − σ0

σu

)m
The Weibull stress is then defined as:

σW =

(
σu
V0

∫
V
σ′m dV

)
1/m

where σM1 , σM2 and σM3 are the post-computation results from a local fmax applied successively
to the three principal stresses σ1, σ2 and σ3, in descending order. These sub-posts are run
automatically by the weibull processor.

V0, σu, σ0 and m are material parameters.

The probability of failure Pr is is given by:

Pr = 1− exp

(
−
(
σW
σu

)m)
In addition to the output of σW and Pr. the values of σ′ are stored at each Gauss point

under a name constructed by adding _wb to the variable name.

Syntax:

**process weibull

*var name

*mode eigenstress | independant

*coefmin value1

*coefmax value2

*file namef

If the user has only specified a single map (with output_number), the history is recon-
structed from the values read after the options *coefmin and *coefmax. σM1 varies linearly
over 100 maps of value1*σ1 to value2*σ1 (where σ1 is calculated at the specified map).

With the option *file, the history is read in the file namef, of the form:

Z-set — Non-linear material
& structure analysis suite 4.125

****post processing

***global post processing

**process weibull

0.01 10

0.02 15

0.03 20

0.04 40

0.05 60

...

where the first column represents the time and the second the value of σ1.

These two methods presented for the mode eigenstress extend to the mode independant
as well.

Example:

**output_number 10

**process weibull

*var sig

*mode independent

*coefmin 0.5

*coefmax 2.5

% material file

**process weibull

V0 10.

m 20.

sigma_u 1200.

sigma_0 0.

Z-set — Non-linear material
& structure analysis suite 4.126

Chapter 5

Reference

Z-set — Non-linear material
& structure analysis suite 5.1

Functions

Functions

Description:
The functions have been generalized in code versions greater than 7.1 to have a natural
equation like form, and apply more widely throughout the program. In addition to coefficient
definitions, the functions may now be used to define load waveforms, apply to the optimizer,
etc. More applications will be added as well.

The functions follow a C-like syntax, and may be defined in terms of pre-defined functions
(sin, log, etc) and named parameters of the problem. What parameters are allowed and
available depends on application.

Syntax:
Objects which are functions may now be entered using a C-like format. This must include
a semi-colon at the end of the function definition to terminate the reading of the function.
Many operators exist, which have the same meaning and order of selection as in C. Coefficients
which are functions still require the keyword function to follow the coefficient name, but are
otherwise generqally given in terms of the relevant parameters.

The following operators are defined in functions:

:= == >= <= + - * / ^ > <

as are the following functions:

triangle floor asinh acosh atanh asin acos atan

cosh sinh tanh ceil sqrt neg abs sqr sin cos tan

exp ln Hx H urandom

Pre-defined functions may take complex arguments of other expressions or functions.

triangle function used to make a sawtooth waveform with period 1 of the parameter.

floor largest integral value not greater than x.

H Heavyside function. Equal to 1 for x > 0 and 0 otherwise.

Hx Heavyside of its parameter times its parameter. Equal to x for x > 0 and 0 otherwise.

urandom(a,b) Uniform random distribution that returns values between a and b

Example:

Z-set — Non-linear material
& structure analysis suite 5.2

Functions

***function load_tab sin(6.28319*time);

***elasticity

young function 2.e6-100.*temperature -2.*temperature^2.;

poisson 0.3

Z-set — Non-linear material
& structure analysis suite 5.3

Degrees of Freedom (DOF)

Degrees of Freedom (DOF)

Description:
The degree of freedom (DOFs) types in Z-set each have a particular name used for their iden-
tification in various parts of the code. These applications may be in specifying the boundary
conditions (**impose nodal dof takes a DOF name for example), specifying output curves,
or use within the post-processor.

The names currently active in the code are summarized in the following table:

CODE DESCRIPTION

U1 displacement along the axis 1

U2 displacement along the axis 2

U3 displacement along the axis 3

EZ Deformation along the axis 3 for plane stress

R1 Rotation about the axis 1

R2 Rotation about the axis 2

R3 Rotation about the axis 3

W1 Micro-polar rotation about the axis 1

W2 Micro-polar rotation about the axis 2

W3 Micro-polar rotation about the axis 3

PR Pressure

TP Temperature

Z-set — Non-linear material
& structure analysis suite 5.4

Element Geometries

Element Geometries

Description:
This section defines the ordering of node and Gauss point numbering for the different el-
ement geometries. The following figures display the element information with numbering
corresponding to the order of definition in the .geof file.

The following element geometries are available:

spr1, spr2 springs with fixed behavior (in .geof file. These accept spring parameters
after the node list.

l2d2, l2d2r, l3d2, l3d2r line elements. These are used for truss or spring elements
with two nodes. There is only a force acting between the nodes.

l2d1, l3d1 one node spring or dashpot elements. These oppose motion from their originl
location.

rve1d, rve2d, rve3d representitive volume element (RVE) to be used for material simu-
lation. There are no nodes. and only one “integration” point.

deb2 2D debonding element geometry.

c2d3r, c2d3, c2d4r, c2d4, c2d6r, c2d6, c2d8r, c2d8 2D continuum elements. “r”
denotes reduced integration.

cax3r, cax3, cax4r, cax4, cax6r, cax6, cax8r, cax8 axisymmetric 2D continuum
elements.

c3d4, c3d4r, c3d10r, c3d10, c3d6r, c3d6, c3d8r, c3d8, c3d20r c3d20, c3d15r,

c3d15 3D continuum elements.

sax3, sax3r, sax3rr, sax2, sax2r, sax2rr axisymmetric shells.

s3d3r, s3d3, s3d4r, s3d4, s3d6r, s3d6, s3d8r, s3d8 3D shells.

Node definitions for different element geometries are given on the following page. Note
that all other information about the element chosen (formulation, material, real constants)
are specified in terms of element sets in the problem.inp file.

Z-set — Non-linear material
& structure analysis suite 5.5

Element Geometries

c2d3

c2d4

c2d6

c2d8

1

2
3

2

1

3
4

1

2

3
4 5

6

2 3

4

5
67

8

1

c3d10

c3d15

c3d20

9

3
5 2

4
1

6

7
8

10

6

5
4

3
2

1

8

7

9
10

12
11

13
14

15

1

9 10

11

13 14 15

16

1718

7

8

32

4

56

12

19

20

Z-set — Non-linear material
& structure analysis suite 5.6

Boundary sets

Boundary sets

Description:
The boundary sets (faces in 3D or lines in 2D) must be ordered properly such that the normals
may be calculated, positions interpolated, and surface integrals evaluated over them. Incorrect
definitions of these sets are often responsible for boundary condition problems.

The following boundary types are available:

CODE DESCRIPTION

line linear (2 node) line

quad quadratic (3 node) line

t3 linear 3 node triangle face

t6 quadratic 6 node triangle face

q4 linear 4 node quadrilateral face

q8 quadratic 8 node quadrilateral face

**liset bottom
 quad 12 14 1
 quad 1 18 13
 quad 13 3 29
 quad 29 17 21

12
14

1

18

13 3 29 17 21

**faset top
q8 1 14 31 27 53 9 10 12
t6 10 9 53 55 20 33
t6 53 71 30 24 20 55

55927

53 71
30

24

2033
10

12

1

1431

Z-set — Non-linear material
& structure analysis suite 5.7

Element Integration

Element Integration

Description:
This section defines the positions and numbering of element Gauss points used for spatial
integration. These points are the only places where material values (e.g. stress and strain)
exist. If you need accurate magnitudes of these variables, it is highly advised to use a **test

output (see page 3.151) to output them, or use the **value_at_integration output for the
structure (page 3.148).

Gauss points are defined in a local element coordinate system which is mapped to the
global coordinates (real element geometry) using the element shape functions. The element
is defined in the local coordinates by −1 to 1 on the ξ and η element axis.

1 2

4 3

η

ξ

−1

−1

1

1

1 2

4 3

η

ξ

−1

+c

−c

−c

+c

c=0.57735027

1

1−1

1

η

ξ

−1

+c

−c

−c

+c

c=0.57735027

−1 1

1

2
3

6

8

7 5

4

1

η

ξ

−1

+c

−c

−c

+c−1 1

1

2
3

6

8

7 5

4

c=0.77459667

Z-set — Non-linear material
& structure analysis suite 5.8

Element Integration

c2d3

c2d6r

c2d3r

c2d6

ξ

η

0
0 1/3

1/3

1 2

31

1
ξ

η

0
0

1 2

31

11/6

1/6

2/3

2/3

1 2

3

ξ

η

0
0

1

1

11/6

1/6

2/3

2/3

1 2

3

2 3

4

5

6

ξ

η

1

2

3
4 5

6

c1 c2 c3 c4

c1
c2

c3

c4

c1 = 0.9157621

c3 = 0.44594849

c2 = 1 − 2 c3

c4 = 1 − 2 c1

Z-set — Non-linear material
& structure analysis suite 5.9

Structure of problem.geof

Structure of problem.geof

The structure of the ASCII file describing problem geometries is summarized below:

***geometry

**node

n dim number of nodes, space dimension

x1 y1 [z1]

...

xn yn [zn]

**element

j number of elements

1 type1 n11n1k element number, type, list of node numbers

...

j typej nj1 njk

***group

**nset name name of a node set

n1 n2 ... nk list of the k nodes in the node set

**elset name name of an element set

n1 n2 ... nk list of the k elements in the element set

**faset name surface (3D face) group name

type1 n11 ... n1k type of face, ordered list of nodes in the face

...

typej nj1 ... njk

**liset name surface (linear) group name

type1 n11 ... n1k type of line, ordered list of nodes in the liset

...

typej nj1 ... njk

***return

The position of the nodes must be given in Cartesian coordinates for 2D plane and 3D
problems, or in cylindrical coordinates (r,z) for 2D axisymmetric problems.

The groups of nodes, faces, elements, and element lines segments must come after the

Z-set — Non-linear material
& structure analysis suite 5.10

Structure of problem.geof

node and element definitions. These groups are defined between the keywords ***group and
***return.

Z-set — Non-linear material
& structure analysis suite 5.11

Z-set output formats

Z-set output formats

Z-set has two output formats. The default output format is Z7. A new output format has
been implemented since Z8.4 version, to allow remeshing.

Z-set — Non-linear material
& structure analysis suite 5.12

Z-set output formats

Z7 output format

problem.ut The description of the output files problem.node, problem.integ, prob-
lem.ctnod, and problem.ctele is given in the file problem.ut.

• After **node the names of the nodal variables and parameters stored in prob-
lem.node are given.

• After **integ the names of integration (material) variables stored in prob-
lem.integ, problem.ctnod, and problem.ctele are given.

• **meshfile gives the name of the file problem.geof used for the problem (presently
without importance).

• **element is not presently used.

Following the demarcated sections described above, a list of the output details is given.
Each line represents the state of the calculation for one output. These lines contain the
output number, the cycle number, the sequence number, increment, and corresponding
time, in that order.

problem.node The file problem.node contains the nodal output variables. These variables
consist of the nodal degrees of freedom (such as displacements, temperature, etc), the
associated reactions to the nodal DOFs (forces, heat flux), and possibly the problem
nodal parameters if the **save_parameter option was given after ***output. The
stored variables will be the complete set of variables at each node, regardless if certain
parameters do not exist at every node in the problem. For variables which do not exist
at a given node, a zero value will be stored.

The problem.node file has the following structure:

[d1, . . . , dN]1 . . . [d1, . . . , dN]nd 1st output

[v1, . . . , dN]1 . . . [v1, . . . , dN]nd

[d1, . . . , dN]1 . . . [d1, . . . , dN]nd 2nd output

1ere variable variable nd

[...]

where nd is the number of DOFs given by **node in the problem.ut file, and N is the
number of nodes.

The problem.node file may be written in C with the following code segment:

for(card=1;card <= stored_cards; card++){

for(variable=1; variable <= nodal_variables_stored;

variable++) {

for(node=1;node <= number_of_nodes_in_mesh ; node++) {

fwrite(&composante[node][variable][card],4,1,fp);

}

}

}

Z-set — Non-linear material
& structure analysis suite 5.13

Z-set output formats

problem.integ The file problem.integ contains the integration point values issued from
the material behavior laws (see **value at integration user ***output). In the event
that certain variables do not exist at all integration points in the problem, a zero value
will be stored in its place. Thus the number of variables is always the union of the
different material variables in the problem.

Each record in the problem.integ file has the following format:

v1pg1el1, v1pg2el1 . . . v1pgnel1 1st variable for element 1

v2pg1el1, v2pg2el1 . . . v2pgnel1 2dn variable for element 1

. . .

vnvpg1el1, vnvpg2el1 . . . vnvpgnel1 variable nv for element 1

v1pg1el2, v1pg2el2 . . . v1pgnel2 1st variable for element 2

v2pg1el2, v2pg2el2 . . . v2pgnel2 2nd variable for element 2

. . .

vnvpg1el2, vnvpg2el2 . . . vnvpgnel2 variable nv for element 2

. . .

. . .

v1pg1elNE , v1pg2elNE . . . v1pgnelNE 1st variable for element NE

v2pg1elNE , v2pg2elNE . . . v2pgnelNE 2nd variable for element NE

. . .

vnvpg1elNE , vnvpg2elNE . . . vnvpgnelNE variable nv for element NE

where NE is the number of elements in the structure, and nv the number of values
stored per integration point (given by **integ in the file problem.ut.

�Elements generally do not have the same number of integration points. Due to this, the
storage of different element types in a problem will generate element data structures of
different size within the same record.

The file problem.integ may be generated using the following C code:

for(card=1;card <= number_of_outputs; card++){

for(ele=1; ele <= number_of_elements ; ele++) {

for(var=1; var<= number_of_stored_variables; var++) {

for(point=1;point <=

number_of_integration_points_per_element[ele] ;point++) {

fwrite(&component[point][var][ele][card],4,1,fp);

}

}

}

}

problem.ctnod The problem.ctnod file contains the integration point variables (material
variables) extrapolated to the nodes and will be generated when the **contour option is
selected under ***output. This file follows the storage format used for the problem.node

files.

The structure of each record in the problem.ctnod file is the following:

v11, v12 . . . v1N variable 1

Z-set — Non-linear material
& structure analysis suite 5.14

Z-set output formats

v21, v22 . . . v2N variable 2

. . .

vnv1, vnv2 . . . vnvN variable nv

where N is the number of nodes and nv the number of variables indicated by **integ
in the problem.ut file. A problem.ctnod may be generated using the following C code:

for(card=1;card <= nombre_de_carte_stockees; card++){

for(var=1; var <= nombre_de_variables_stockees ; var++) {

for(node=1;node <= nombre_de_noeuds_du_maillage ; node++) {

fwrite(&composante[node][var][card],4,1,fp);

}

}

}

problem.ctele The file problem.ctele contains the integration variables at nodes. The
file duplicates the problem.ctnod data but uses on an element to element extrapolation
basis. Element based storage retains the discontinuous fields between elements with
different materials. The file will be generated by using the **contour ele option under
***output. Output records in the problem.ctele file each have the following format:

v1no1el1, v1no2el1 . . . v1nonel1 1ere variable for element 1

v1no1el2, v1no2el2 . . . v1nonel2 1ere variable for element 2

. . .

v1no1elNE , v1no2elNE . . . v1nonelNE 1ere variable for element NE

v2no1el1, v2no2el1 . . . v2nonel1 2nde variable for element 1

v2no1el2, v2no2el2 . . . v2nonel2 2nde variable for element 2

. . .

v2no1elNE , v2no2elNE . . . v2nonelNE 2nde variable for element NE

. . .

. . .

vnvno1el1, vnvno2el1 . . . vnvnonel1 variable nv for element 1

vnvno1el2, vnvno2el2 . . . vnvnonel2 variable nv for element 2

. . .

vnvno1elNE , vnvno2elNE . . . vnvnonelNE variable nv for element NE

where NE is the number of the elements in the structure, and nv the number of values
stored per integration point (as given by the **integ section in the file problem.ut).

�Different elements do not have the same number of nodes. The storage for different
elements within the problem may therefore have different data structure sizes within
the same record.

The file problem.ctele may be generated using the following C code:

for(card=1;card <= nombre_de_carte_sorties; card++){

for(var=1;

var <= nombre_de_variables_stockees_au_points_d_integration;

var++) {

for(element=1; element <= nombre_d_elements; element++) {

for(node=1;node <= nombre_de_noeuds_de_l_element[element];

Z-set — Non-linear material
& structure analysis suite 5.15

Z-set output formats

node++) {

fwrite(&composante[node][element][var][card],4,1,fp);

}

}

}

}

problem.eigen info If the calculation is an eigen value problem, the resonant frequencies
and associated energies for each mode are stored in the file problem.eigen_info. This
file is an ASCII formatted text file.

problem.eigen When an eigen value calculation is run, the resonant vectors or modal
displacements are stored in the file problem.eigen. The structure of the binary file is
ordered mode number, frequency of the mode, and the energy associated to the mode.
Thus we have:

U11, U12 . . . U1N displacement U1

U21, U22 . . . U2N displacement U2

[U31, U32 . . . U3N displacement U3]

end of the storage of the first mode.

The file problem.eigen may be generated using the following C code:

for(mode=1;mode <= nombre_de_modes_extraits; mode++){

fwrite(&mode,4,1,fp);

fwrite(&frequence_du_mode[mode],4,1,fp);

fwrite(&energie_du_mode[mode],4,1,fp);

for(dime=1; dime <= dimension_de_l_espace ; dime++) {

for(node=1;node <= nombre_de_noeuds_du_maillage ;node++) {

fwrite(&composante[dime][node][mode],4,1,fp);

}

}

}

Z-set — Non-linear material
& structure analysis suite 5.16

Z-set output formats

Z8 output format

Description:
The Z8 output format has been implemented since Z8.4 version, to allow remeshing.
While the default Z7 format uses results.integ, results.node, results.ctnod ... result
files, the new Z8 format uses a tree allowing to read results for which mesh changes from
one map to another.

The figure below shows the structure of the file system containing result and mesh files.

result.zres

fea.00.01.zres fea.00.02.zres fea.00.i.zres fea.00.n.zres

Subdirectory for each mesh used during computational time (i=1,n):

contents.txt
mesh-1.geof

For each map:
(j=1,m)

m.00001

m.00002

m.m

contents.txt
mesh-1.geof

m.m+1

map.txt
Binary result files:

node@U@v3.be ctnod@sig@t6.be integ@sig@t6.be

Syntax:
User can activate the new Z8 format by adding in the .inp file the following commands:
****calcul

...

***global_parameter

Solver.OutputFormat Z8

Zmaster.OutputFormat Z8

...

****return

The Z8 format file structure is organized as follows:

Z-set — Non-linear material
& structure analysis suite 5.17

Z-set output formats

• one main directory named -here- result.zres (implying that the .inp file is re-
sult.inp, and the execution command ”Zrun result”);

• some sub-directories respectively named fea.00.01.zres, fea.00.02.zres ...
created at each remeshing. Each ith remeshing generates a corresponding
fea.00.i.zres sub-directory. Each sub-directory contains:

– an ASCII file named contents.txt that describes the name, the type (scalar,
tensor ...), and the location (at nodes, at integration points, extrapolated at
averaged nodes ...) of the physical quantities stored in result files;

– the current mesh file i.e. an ASCII file with a .geof extension;

– a list of sub-directories named m.00001, m.00002 ..., corresponding to the list
of output maps (computational times for wich user wants results to be written),
and containing:

∗ an ASCII file named map.txt that describes the current output map (cycle
number, sequence number, increment number, time value ...);

∗ binary files containing the results computed for each physical quantity to
be written.

This new file system is directly machine-readable using Zmaster. User may from now
on graphically analyze computational results for which mesh changes from one map to
another.
The figure below shows a crack propagation during a computation implying remeshing.

x

y

z

Map 1
x

y

z

Map 13
x

y

z

Map 22

Z-set — Non-linear material
& structure analysis suite 5.18

Environment Variables

Environment Variables

The environment variables are used to personalize the Z-set program for individual users,
and maintain a self-contained project structure. The function extends as well to manage
multi-architecture sites, thereby allowing the transparent use of the program over a diverse
network. The currently used environment variables are summarized as:

CODE DESCRIPTION

Z7PATH path to the head Z-set’s directory

structure

Z7 MAX NB DOF number of DOFs above which disk storage is used

Z7 TMP DIR path for the temporary files if needed

Z7 LICENSE path to a license file if not stored in

$Z7PATH/lib/Zebulon.License

Z7PATH variable which indicates the location of the Z-set distribution. This variable allows
easy switching to different distributions. It also is a cause of much difficulty with users
if not configured correctly.

cd /usr/local/Z8.3.6-Mar-15-2006

setenv Z7PATH ‘pwd‘

source lib/Z7_cshrc

Z7 MAX NB DOF This sets the maximum number of degrees of freedom before the global
matrix is stored on disk. Because disk storage is not expensive, it is advisable to set
this to a fairly low value (e.g. 5000). One can also use ***file management to comtrol
the parameter.

Z7 TMP DIR directory where the temporary files are to be stored. Default is the problem
directory. This can also be set with ***file management.

Z7 LICENSE fully qualified path to a license file. Extremely useful when there are multiple
versions, or for running Zebulon directly off a CD-ROM where one can’t put the license
file in a read only lib dir.

Example:
In the C-shell, these variables are set using the setenv command. The variables may be
directly in the user’s .cshrc file, or in a separate file. For the later case, one may add the
line to the .cshrc file: if (-f ~/lib/Z7_vars) source ~/lib/Z7_vars Examples of variable
settings are given below:

Z-set — Non-linear material
& structure analysis suite 5.19

Environment Variables

% cat ~/lib/Z7_vars

setenv Z7_TMP_DIR /home/disk/me/Z7

setenv Z7_MAX_NB_DOF 5000

setenv Z7_PRINTER_COLOR_A3 HPDESKJET

Z-set — Non-linear material
& structure analysis suite 5.20

Chapter 6

Bibliography

Z-set — Non-linear material
& structure analysis suite 6.1

Farh91 C. Farhat and F.-X. Roux, “A Method of Finite Element Tearing and Inter-

connecting and its Parallel Solution Algorithm,” Int. J. Num. Meth. Eng., 32

1205-1227 (1991).

Feye98 F. Feyel, Application du Calcul Parallèle aux Modèles à Grand Nombre de Vari-

ables Internes, Thesis Ecole Nationale Supérieure des Mines de Paris (1998).

Hors85 Horst G. DeLorenzi, “Energy release rate calculations by the finite element

method”, Eng. Fract. Mech., 21 129-143 (1985).

Matt79 H. Matthies and G. Strang, “The Solution of Nonlinear Finite Element Equa-

tions,” Int. J. Num. Meth. Eng., 14, 1613-1626 (1979).

Neu89 Neu and Sehitoglu “Thermomechanical Fatigue Oxidation and Creep Part II

Life Prediction” Metall Trans A, 20A 1769-1783 (1989).

Park74 D.M. Parks, “A Stiffness Derivative Finite Element Technique for Determi-

nation of Crack Tip Stress Intensity Factors,” Int. J. Fracture, 10, 487-502

(1974).

Z-set — Non-linear material
& structure analysis suite 6.2

Chapter 7

Index

Z-set — Non-linear material
& structure analysis suite 7.1

Index

****calcul
***auto remesh, 3.31
***auto restart, 3.198
***bc, 3.34

**centrifugal, 3.58
**convection heat flux, 3.79
**crack release, 3.59
**deformation, 3.60
**free rotation, 3.62
**gravity, 3.64
**hydro, 3.65
**impedance, 3.66
**impose element dof, 3.41
**impose element dof reaction, 3.42
**impose elset dof, 3.43
**impose elset dof reaction, 3.44
**impose nodal dof, 3.45
**impose nodal dof density, 3.51
**impose nodal dof rate, 3.47
**impose nodal reaction, 3.49
**impose nodal reaction rate, 3.50
**interface heat, 3.80
**K field, 3.55
**linear free rotation, 3.63
**linear rotation, 3.67
**pressure, 3.68
**pressure from function, 3.69
**radial, 3.70
**radiation, 3.84
**radius, 3.71
**release nodal dof, 3.52
**rotation, 3.72
**shear, 3.74
**static torsor, 3.76
**strain gradient, 3.77
**submodel, 3.53
**surface heat flux, 3.78
**T field, 3.57
**volumetric heat, 3.81
**volumetric heat from parameter, 3.82
**volumetric heat in file, 3.83

***compute G by gth, 3.86
***contact, 3.91

**zone, 3.100

**zone coulomb, 3.104
**zone normal, 3.102
**zone ortho coulomb, 3.105
**zone penalty, 3.103

***coupled resolution, 3.85
***dimension, 3.106
***eigen, 3.107
***elastic energy, 3.109
***equation, 3.110

**free, 3.111
**mpc1, 3.112
**mpc2, 3.113
**mpc2 dof elset, 3.115
**mpc2d3d, 3.119
**mpc2x, 3.114
**mpc3, 3.116
**mpc4, 3.117
**mpc periodic, 3.120
**mpc rb, 3.123
**nul div u, 3.121

***feti, 3.124
***file management, 3.126
***fluid structure interface, 3.127
***function, 3.203
***impose kinematic, 3.128
***init dof value, 3.129
***initialize with transfer, 3.130
***linear solver rigid, 3.30
***linear solver sparse iterative, 3.27
***make restart file, 3.133
***material, 3.135

**var mat ini, 3.140
***matrix storage, 3.134
***mesh, 3.141

**local frame, 3.146
***output, 3.148

**test, 3.154
***parameter, 3.155

**ascii file, 3.160
**file, 3.157
**from results, 3.163
**from results with transfer, 3.164
**function, 3.165
**results, 3.166

7.2

**table, 3.167
***post increment, 3.168

**i integral, 3.169
**j integral lorenzi, 3.170
**non local, 3.171
**parks, 3.173

***pre problem, 3.175
**init z7p rotations, 3.176
**layer orientation, 3.177

***random distribution, 3.179
***resolution, 3.181

**cycles, 3.193
**init d dof, 3.188
**max divergence, 3.189
**sequence, 3.190
**skip cycles, 3.195
**use lumped mass, 3.196

***resolution bfgs, 3.183
***resolution newton, 3.182
***resolution riks, 3.184

**automatic time, 3.185
***restart, 3.197
***specials, 3.204
***sub problem, 3.147
***table, 3.199
***xfem crack mode, 3.205

****mesher
***mesh, 2.7

**add element, 2.10
**add info, 2.11
**add node, 2.12
**boolean operation, 2.13
**bounding box, 2.15
**bset, 2.16
**bset align, 2.18
**bset to mast, 2.19
**bset to mesh, 2.20
**build fronts, 2.21
**build parallel boundary files, 2.22
**build parallel param files, 2.23
**cfv build, 2.25
**check orientation, 2.28
**classical to zstrat, 2.29
**compute predefined levelset, 2.31
**condense out elset domain, 2.30
**continuous liset, 2.34
**crack 2d, 2.35
**crack 3d quarter nodes, 2.37
**create interface elements, 2.38
**create interface elements between elsets,

2.39
**create interface elset, 2.40
**cut surface, 2.41

**deform mesh, 2.44
**delete elset, 2.45
**dg transform, 2.43
**div quad, 2.46
**elset, 2.47
**elset by element type, 2.49
**elset explode, 2.50
**elset split, 2.52
**extension, 2.53
**extension along nset, 2.56
**extract surface, 2.57
**extrude shell, 2.58
**faset align, 2.59
**function, 2.60
**fuse nset, 2.62
**geof format, 2.63
**hexa to tetra, 2.64
**import abaqus pressure, 2.65
**insert discontinuity, 2.66
**inverse bset, 2.67
**inverse liset, 2.68
**join bsets, 2.69
**join nsets, 2.70
**lin to quad, 2.71
**make springs, 2.72
**mesh quad cube, 2.74
**mesh quad parallelepiped, 2.75
**metis renumbering, 2.76
**metis split, 2.77
**modify mesh and cut, 2.79
**nset, 2.80
**nset intersection, 2.82
**open bset, 2.83
**perturb inside, 2.85
**phi psi no refine, 2.24
**porcupine, 2.86
**project nset, 2.87
**propag crack, 2.88
**quad to lin, 2.89
**randomize, 2.90
**refine elset, 2.128
**refine mesh based on element domains,

2.91
**regularize cfv, 2.92
**remesh from results, 2.129
**remove nodes from nset, 2.93
**remove orphans, 2.94
**remove set, 2.95
**rename set, 2.96
**renumbering, 2.97
**resize node, 2.98
**rigid body, 2.99
**rotate, 2.100

Z-set — Non-linear material
& structure analysis suite 7.3

**scale, 2.101
**sequential ids, 2.104
**set normal, 2.103
**set reduced, 2.102
**small, 2.105
**sort nset, 2.106
**split, 2.107
**sweep, 2.108
**switch element, 2.110
**symmetry, 2.111
**thicken bset, 2.112
**to 2d, 2.113
**to 3d, 2.114
**to cax, 2.115
**transform fili, 2.116
**translate, 2.117
**unconnected parts, 2.118
**union, 2.119
**unshared edges, 2.120
**unshared faces, 2.121
**volume to shell, 2.122
**yams by elset, 2.127
**yams ghs3d, 2.123

****post processing
***data output, 4.11, 4.17
***data source, 4.11, 4.14
***global post processing, 4.92

**process anisotropic failure, 4.94
**process average, 4.101
**process average around, 4.103
**process average in element, 4.104
**process batdorf, 4.105
**process beremin, 4.108
**process clip image, 4.109
**process coordinates, 4.111
**process format, 4.112
**process hot spot, 4.113
**process max, 4.115
**process min, 4.116
**process momentum, 4.102
**process node extrapolation, 4.117
**process node interpolation, 4.118
**process relocalised post, 4.119
**process static torsor, 4.121
**process surface normals, 4.122
**process volume, 4.123
**process volume above, 4.124
**process weibull, 4.125

***local post processing, 4.19
**at, 4.22
**elset, 4.24
**file, 4.26
**ipset, 4.25

**material file, 4.27
**nset, 4.23
**output number, 4.21
**process, 4.29
**process copy, 4.30
**process creep, 4.32
**process cycle, 4.34
**process cycle projection, 4.37
**process derive, 4.39
**process deviator, 4.40
**process ductile failure, 4.41
**process eigen2, 4.43
**process fatigue E, 4.44
**process fatigue EE, 4.45
**process fatigue rainflow, 4.47
**process fatigue S, 4.48
**process fmax, 4.64
**process fmin, 4.66
**process format, 4.50
**process function, 4.52
**process HCF, 4.53
**process initiation, 4.55
**process LCF, 4.57
**process make field, 4.60
**process mat sim, 4.61
**process max, 4.63
**process min, 4.65
**process mises, 4.67
**process multirange, 4.68
**process neu sehitoglu, 4.77
**process norm, 4.70
**process oxidation, 4.71
**process rainflow, 4.73
**process range, 4.75
**process swt, 4.82
**process trace, 4.88
**process transform frame, 4.89
**process tresca, 4.90
**process triax, 4.91

***post file prefix, 4.11
***precision, 4.11
***suppress p on post files, 4.11

2 5D 2 5D updated, 3.144

abaqus, 2.8
absolu, 2.124
add, 2.119
add element, 2.10
add element elset, 2.10
add elset, 2.47
add info, 2.11
add node, 2.12
add node nset, 2.12
algorithm, 3.190

Z-set — Non-linear material
& structure analysis suite 7.4

allow mixed fuse, 2.62
allow partial, 2.47
allow quad, 2.42
angle, 2.108
anisotropic failure, 4.94
ansys, 2.8
apply to, 2.40
ascii file, 3.160
ask crack to, 2.25
ask speed to, 2.88
at, 3.150, 4.22
attached to nodes, 2.47
attached to nset, 2.47
auto remesh*, 3.31
automatic time, 3.185
average, 4.101, 4.121
average around, 4.103
average locations, 2.62
away from, 2.18
axes, 2.16, 2.80
axi, 2.38, 2.39
axis, 2.29, 2.108, 2.110

base name, 2.119
batdorf, 4.105
beremin, 4.108
beta, 3.17
bfgs, 3.183
boolean operation, 2.13
boundary, 2.38
bounding box, 2.15
bset, 2.16, 2.21, 2.22, 2.43, 2.65, 2.66, 2.86, 2.112,

2.122
bset align, 2.18
bset name, 2.20
bset to mast, 2.19
bset to mesh, 2.20
bsets, 2.18, 2.95
bsets start with, 2.95
build fronts, 2.21
build parallel boundary files, 2.22
build parallel param files, 2.23

card, 2.23, 2.129
cb shell, 3.143
cb shell updated lagrangian, 3.143
center, 2.24, 2.109
centrifugal, 3.58
cfv build, 2.25
check domains, 2.77
check domains iter, 2.77
check orientation, 2.28
classical to zstrat, 2.29
cleanup mesh, 2.62

cleanup nset, 2.62
clip image, 4.109
close, 2.88
color map, 4.110
component, 3.150
compute predefined levelset, 2.31
condense out elset domain, 2.30
connect, 2.26
connect nodes, 2.72
connect points, 2.72
contact*, 3.91
continuous liset, 2.34
contour, 3.149
contour by element, 3.149
convection heat flux, 3.79
conventions, 1.3
coordinates, 4.111
cosserat, 3.145
cosserat plane strain, 3.145
cosserat plane stress, 3.145
coupled solution, 3.23
crack, 2.88
crack 2d, 2.35
crack 3d quarter nodes, 2.37
crack nset, 2.35
crack release, 3.59
create bc, 3.30
create interface elements, 2.38
create interface elements between elsets, 2.39
create interface elset, 2.40
criterion, 2.57, 2.106
curve, 3.151
cut desc, 2.92
cut surface, 2.41
cycle, 3.150, 3.199, 3.200, 4.34
cycles, 3.193

damp [constant], 3.18
damping, 3.17
data output, 4.12
data source, 4.12
deform mesh, 2.44
deformation, 3.60
delete elset, 2.45
delete file, 2.4
delta, 2.25
delta p, 2.25
dg transform, 2.43
diffusion, 3.22
dimx, dimy, 4.110
dir, 2.54
direction, 2.87, 2.112
dist crit, 2.13
distance, 2.54, 2.87

Z-set — Non-linear material
& structure analysis suite 7.5

div quad, 2.46
divergence, 3.186
DOF, 5.4
dof, 2.99
dof i, 2.99
domain, 2.52
domain startswith, 2.52
domains, 2.77, 2.107
dont save final mesh, 2.7
draw limits between elsets, 4.110
dtime, 3.150, 3.192, 3.199
ductile failure, 4.41
duplicate, 4.19
dynamic, 3.10

edges, 2.91
eigen, 3.20
eigen2, 4.43
element, 5.5, 5.8
element node var, 3.151
elements, 2.47
elset, 2.16, 2.21, 2.28, 2.30, 2.38, 2.41, 2.43, 2.46,

2.47, 2.53, 2.57, 2.60, 2.64, 2.66, 2.71,
2.90, 2.102, 2.108, 2.110, 2.116, 2.117,
2.119, 2.120, 2.127, 2.128, 3.141, 4.24

elset2, 2.53, 2.108
elset by element type, 2.49
elset explode, 2.50
elset name, 2.29, 2.40, 2.58
elset split, 2.52
elset to cut, 2.41
elsets, 2.39, 2.50, 2.95, 2.121
elsets start with, 2.95, 4.110
enable node renumbering, 2.79
every update, 3.18
explicit dynamics, 3.15
export, 2.7, 4.50, 4.112
extension, 2.53
extension along nset, 2.56
extract surface, 2.57
extrude shell, 2.58

factor, 2.85
faset, 5.7
faset align, 2.59
fatigue E, 4.44
fatigue EE, 4.45
fatigue rainflow, 4.47
fatigue S, 4.48
femap, 2.8
file, 2.22, 2.23, 3.141, 3.155, 3.157, 3.199, 3.200,

4.26
file .ctele, 5.15
file .ctnod, 5.14

file .eigen, 5.16
file .eigen info, 5.16
file .integ, 5.14
file .node, 5.13
file .ut, 5.13
filter, 2.42
first dtime, 3.186
fixed dt, 3.17
flipit, 2.54
fmax, 4.64
fmin, 4.66
force meshadapt, 2.124
format, 2.44, 4.50, 4.112, 4.113
free, 3.111
free interface, 2.129
free rotation, 3.62
frequency, 3.150
from results, 3.163
from results with transfer, 3.164
front, 2.41
front ini, 2.42
frontal, 2.97
full output, 3.27
func, 2.47, 2.60
function, 2.16, 2.60, 2.80, 3.165, 3.199, 3.200, 4.52,

4.113, 5.2
function declarations, 2.4
fuse nset, 2.62
fusion, 2.109

gauss points, 5.8
gauss var, 3.151
geof format, 2.63
geometry, 5.5, 5.7
gfm, 2.8
global normal, 2.56
global parameter, 2.4, 4.11
global post processing, 4.12
gmsh, 2.8
gradation, 2.124
gravity, 3.64
gtheta, 3.86

half, 2.35
HCF, 4.53
height, 2.86, 2.112
hexa to tetra, 2.64
hot spot, 4.113
hydro, 3.65

i integral, 3.169
impedance, 3.66
import, 2.7, 3.141
import abaqus pressure, 2.65

Z-set — Non-linear material
& structure analysis suite 7.6

impose element dof, 3.41
impose element dof reaction, 3.42
impose elset dof, 3.43
impose elset dof reaction, 3.44
impose nodal dof, 3.45
impose nodal dof density, 3.51
impose nodal dof rate, 3.47
impose nodal reaction, 3.49
impose nodal reaction rate, 3.50
increment, 3.4, 3.150, 3.191
init d dof, 3.188
init lp, 3.125
init z7p rotations, 3.176
initialize with transfer*, 3.130
initiation, 4.55
inp file, 2.7
input problem, 2.44
insert discontinuity, 2.66
inside, 2.42
integration, 5.8
interface heat, 3.80
intersection name, 2.82
inverse bset, 2.67
inverse liset, 2.68
invert fasets, 2.54
inwards, 2.18
ip, 2.23
ipset, 4.25
ipsets, 2.95
ipsets start with, 2.95
iteration, 3.191
iterations, 3.4

J, 3.154
j integral lorenzi, 3.170
join bsets, 2.69
join nsets, 2.70

k, 2.8
K field, 3.55
keep 1st, 2.13
keep 2nd, 2.13
keep bset, 2.20
keep direction, 3.28, 3.125
krylov space, 3.28

latex, 4.110
law, 3.179
layer orientation, 3.177
layered, 2.29, 2.58
LCF, 4.57
limit, 2.16, 2.80, 2.105
limit dof, 3.191
lin to quad, 2.71

linear free rotation, 3.63
linear rotation, 3.67
linear solution, 3.149
linear spring, 3.143
linear summation, 3.149
liset, 2.19, 2.25, 2.35, 2.92, 5.7
liset var, 3.151
list var, 4.109
local frame, 3.142, 3.146, 4.89
local post processing, 4.12
local solver, 3.30
locator type, 4.119
ls-dyna, 2.8

magnitude, 2.44, 2.90
make springs, 2.72
map, 2.44, 4.21
master file, 2.91
mat sim, 4.61
material, 3.136
material elset, 2.128
material file, 4.27
max, 4.63, 4.115
max divergence, 3.189
max dt, 3.17
max dtime, 3.186
max iteration, 3.27, 3.125
max standing, 3.28, 3.125
max successive, 3.18
max val, 4.113
maxsize, 2.128
merge nset, 2.119
mesh, 2.4, 3.204, 4.11
mesh quad cube, 2.74
mesh quad parallelepiped, 2.75
metis renumbering, 2.76
metis split, 2.77
min, 4.65, 4.116
min dt, 3.17
min dtime, 3.186
min iter, 3.28
min max, 4.110
min val, 4.113
minimum, 4.113
mises, 4.67
modify mesh and cut, 2.79
momentum, 4.102
move all, 2.85
mpc1, 3.112
mpc2, 3.113
mpc2 dof elset, 3.115
mpc2d3d, 3.119
mpc2x, 3.114
mpc3, 3.116

Z-set — Non-linear material
& structure analysis suite 7.7

mpc4, 3.117
mpc periodic, 3.120
mpc rb, 3.123
multirange, 4.68

n2 sort, 2.106
name, 2.43, 3.199
nb iter, 2.124
nb iter surf, 2.124
nb iter vol, 2.124
nbc, 2.25
nbr, 2.99
nbre, 2.25
nbri, 2.25
ncut, 2.74
ncutx, 2.75
ncuty, 2.75
ncutz, 2.75
neu, 2.8
neu sehitoglu, 4.77
new elset, 2.53, 2.108
new mesh name, 2.20
newton, 3.182
no binary, 2.52, 2.77
no elset, 2.77, 2.107
no nset, 2.71
nodal, 2.97
node, 2.35
node extrapolated, 3.151
node extrapolation, 4.117
node i, 2.99
node interpolation, 4.118
node var, 3.151
nodes, 2.16, 2.80, 2.117, 5.5
non local, 3.171
norm, 4.30, 4.70
normal, 2.18, 2.24, 2.111
not in elsets, 2.47
nset, 2.21, 2.38, 2.60, 2.66, 2.72, 2.80, 2.90, 2.92,

2.99, 2.105, 2.111, 4.23
nset , 2.117
nset1, 2.62
nset2, 2.62
nset intersection, 2.82
nset name, 2.106
nset not to cut, 2.41
nset pair, 2.72
nset to cut, 2.41
nset to follow, 2.56
nset var, 3.151
nsets, 2.82, 2.95
nsets start with, 2.95
nul div u, 3.121
null sets, 2.95

num, 2.54, 4.113

open, 2.7, 2.88
open bset, 2.83
open mast, 2.7
opening, 2.26
operation, 2.13
optim style, 2.124
ortho, 4.110
orthogonal, 2.87
output, 2.7, 2.19, 4.109
output every iter, 3.28
output file, 2.13, 4.119
output number, 4.21
output to file, 3.28
output variables, 4.89
oxidation, 4.71

P0, P1, P2, 4.109
param file, 2.89
param files, 2.76
parks, 3.173
periodic, 3.144
periodic plane strain, 3.144
perturb inside, 2.85
phi psi no refine, 2.24
plane, 2.16, 2.80
plane strain, 3.143
plane strain updated, 3.143
plane stress, 3.143
plane stress updated, 3.143
plot, 3.151
point, 2.80, 2.111
porcupine, 2.86
post file prefix, 4.11
power, 2.129
precision, 3.27, 3.124, 3.151, 4.11
precond, 3.27, 3.125
predefined, 3.142
preserve XXset, 2.125
pressure, 3.68, 3.144
pressure from function, 3.69
process, 4.29
process anisotropic failure, 4.94
process average, 4.101
process average around, 4.103
process average in element, 4.104
process batdorf, 4.105
process beremin, 4.108
process clip image, 4.109
process coordinates, 4.111
process copy, 4.30
process creep, 4.32
process cycle, 4.34

Z-set — Non-linear material
& structure analysis suite 7.8

process cycle projection, 4.37
process derive, 4.39
process deviator, 4.40
process ductile failure, 4.41
process eigen2, 4.43
process fatigue E, 4.44
process fatigue EE, 4.45
process fatigue rainflow, 4.47
process fatigue S, 4.48
process fmax, 4.64
process fmin, 4.66
process format, 4.50, 4.112
process function, 4.52
process HCF, 4.53
process hot spot, 4.113
process initiation, 4.55
process LCF, 4.57
process make field, 4.60
process mat sim, 4.61
process max, 4.63, 4.115
process min, 4.65, 4.116
process mises, 4.67
process momentum, 4.102
process multirange, 4.68
process neu sehitoglu, 4.77
process node extrapolation, 4.117
process node interpolation, 4.118
process norm, 4.70
process oxidation, 4.71
process rainflow, 4.73
process range, 4.75
process relocalised post, 4.119
process static torsor, 4.121
process surface normals, 4.122
process swt, 4.82
process trace, 4.88
process transform frame, 4.89
process tresca, 4.90
process triax, 4.91
process volume, 4.123
process volume above, 4.124
process weibull, 4.125
prog, 2.54
project nset, 2.87
projector, 3.124
propag crack, 2.88
proximity, 2.72
ptable file, 2.65

quad to lin, 2.89

radial, 3.70
radiation, 3.84
radius, 3.71, 4.114

rainflow, 4.73
randomize, 2.90
range, 4.75
ratio, 3.188, 3.192
ratio [absolute], 3.17
rc, 2.25
re, 2.25
reaction, ele, node, 3.152
reduced, 2.38, 2.39, 2.54
refine elset, 2.128
refine mesh based on element domains, 2.91
refinement, 2.124
refinement file, 2.124
refinement origin, 2.124
regularize cfv, 2.92
release nodal dof, 3.52
relocalised post, 4.119
remesh from results, 2.129
remove elset, 2.47
remove initial nsets, 2.54
remove nodes from nset, 2.93
remove orphans, 2.94
remove set, 2.95
remove sets, 2.39
rename set, 2.96
renumbering, 2.97
reprojection, 3.28, 3.125
req number, 2.16
resize node, 2.98
result name, 2.129
results, 3.166
rho, 2.24
ri, 2.25
Rice-Tracey, 4.4
rice tracey, 4.41
rigid body, 2.99
riks, 3.184
rotate, 2.100
rotation, 3.72, 3.137
runge kutta, 3.136

save in material frame, 3.149
save parameter, 3.150
scale, 2.101
sd, 2.99
section, 3.141
section uniform, 3.145
security, 3.186
seed, 2.64
sequence, 2.48, 2.80, 3.4, 3.188, 3.190
sequential ids, 2.104
set normal, 2.103
set reduced, 2.102
shear, 3.74

Z-set — Non-linear material
& structure analysis suite 7.9

shell, 2.4
show gauge, 3.18
shrink, 2.50
size, 2.74
sizex, 2.75
sizey, 2.75
sizez, 2.75
skip cycles, 3.195
small, 2.105, 3.151
small deformation, 3.143
small deformation plane strain, 3.143
small deformation select int, 3.143
small deformation select int updated, 3.143
small deformation updated, 3.143
smallw, 3.144
smallw updated, 3.144
solver, 3.27
sort nset, 2.106
specify, 3.204
split, 2.107
splitmesh location, 2.107
spr, 3.143
start ele id, 2.72
static torsor, 3.76
station, 4.119
station file, 4.119
step, 4.110
store global matrix, 3.151
store node renumbering, 2.79
store nodes, 2.79
strain gradient, 3.77
subdomain, 2.97
submodel, 3.53
suffix, 4.89
suppress p on post files, 4.12
surface, 2.16, 2.41, 2.81
surface crit, 2.13
surface heat flux, 3.78
surface normals, 4.122
sweep, 2.108
switch element, 2.110
swt, 4.82
symmetry, 2.111

T field, 3.57
table, 3.167
talkative, 2.64
tensor variables, 4.89
test, 3.150, 3.154
thermal transient, 3.21
theta method a, 3.136
thicken bset, 2.112
thickness, 2.58
time, 3.191, 3.199

to 2d, 2.113
to 3d, 2.114
to cax, 2.115
tolerance, 2.41, 2.62, 2.119, 2.124, 4.119
total lagrangian, 3.144
total lagrangian mixte u p, 3.144
total lagrangian mixte u ps, 3.144
total lagrangian plane strain, 3.144
total lagrangian plane strain mixte u p, 3.144
total lagrangian plane strain mixte u ps, 3.144
towards, 2.18, 2.112
trace, 4.88
transform fili, 2.116
transform frame, 4.89
translate, 2.117
transparency, 4.110
tresca, 4.90
triax, 4.91
type, 2.16, 2.81, 2.111
type normal, 2.102
type reduced, 2.102

unconnected parts, 2.118
uniform, 3.155
uniform section, 3.145
union, 2.119
unshared edges, 2.120
unshared faces, 2.121
updated lagrangian, 3.144
updated lagrangian plane strain, 3.144
updated lagrangian plane stress, 3.144
use bset, 2.17, 2.81
use dimension, 2.16, 2.65
use elset, 2.81
use elsets, 2.48
use lumped mass, 3.196
use nset, 2.17, 2.81
user program, 3.199

value, 3.199
value at integration, 3.149
values, 4.110
var, 2.129
var mat ini, 3.140
variable, 4.114
variables, 4.119
variable environnement, 5.19
vector variables, 4.89
verbose, 3.30, 3.152
volume, 4.123
volume above, 4.124
volume to shell, 2.122
volumetric heat, 3.81
volumetric heat from parameter, 3.82

Z-set — Non-linear material
& structure analysis suite 7.10

volumetric heat in file, 3.83
vtk output, 2.24

weak coupling, 3.23
weibull, 4.4, 4.125
write nodes, 4.114

x, *y, *z, 2.117
xfem, 3.205
xtrans, 2.60

yams by elset, 2.127
yams ghs3d, 2.123
yams only, 2.124
yams options, 2.125

Z7 LICENSE, 5.19
Z7 MAX NB DOF, 5.19
Z7 TMP DIR, 5.19
Z7PATH, 5.19
Z8, 2.129
zone, 3.100
zone coulomb, 3.104
zone normal, 3.102
zone ortho coulomb, 3.105
zone penalty, 3.103

Z-set — Non-linear material
& structure analysis suite 7.11

	Introduction
	Z-set user commands
	Conventions

	Mesher
	Introduction
	****mesher
	***mesh

	Finite Element (.inp file)
	Introduction
	****calcul
	****calcul dynamic
	****calcul mechanical_explicit
	****calcul eigen
	****calcul thermal_transient
	****calcul diffusion
	****calcul weak_coupling
	Three stars commands
	***linear_solver
	***linear_solver sparse_iterative
	***linear_solver rigid
	***auto_remesh
	***bc
	***coupled_resolution
	***compute_G_by_gth
	***contact
	***dimension
	***eigen
	***elastic_energy
	***equation
	***feti
	***file_management
	***fluid_structure_interface
	***impose_kinematic
	***init_dof_value
	***initialize_with_transfer
	***make_restart_file
	***matrix_storage
	***material
	***mesh
	***sub_problem
	***output
	***parameter
	***post_increment
	***pre_problem
	***random_distribution
	***resolution
	***resolution newton
	***resolution bfgs
	***resolution riks
	***restart
	***auto_restart
	***table
	***function
	***specials
	***xfem_crack_mode

	Post calculations
	Introduction to Post Computations
	****post_processing
	***data_source
	***data_output
	***local_post_processing
	***global_post_processing

	Reference
	Functions
	Degrees of Freedom (DOF)
	Element Geometries
	Boundary sets
	Element Integration
	Structure of problem.geof
	Z-set output formats
	Z7 output format
	Z8 output format

	Environment Variables

	Bibliography
	Index

