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Chapter 1

Multiscale Modeling
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Multiscale tools in Z-set

Multiscale tools in Z-set

This section presents some tools about the non-linear multi-scale modeling of multi-phase
materials and composites, developed in Z-set. The aim of these approaches is to describe the
behavior of a structure from the local constitutive equations of the constituents.

Several Mean-Field homogenization approaches are available, to allow accurate prediction
of the macroscopic stress-strain response of composite materials, which is related to the de-
scription of their complex microstructural behavior exemplified by the interaction between
the constituents, such as Voigt, Reuss, Self consistent, etc... In the development of the ho-
mogenization procedures for non linear materials, we have to define both the homogenization
step itself, which consists in averaging the local fields to obtain the overall ones and the often
more complicated localization step, where a local problem for each sub-volume is solved in
order to obtain approximations for the local field behavior. In this context, the microstructure
of the material under consideration is basically taken into account by representative volume
elements (RVE).

From a general point of view, the description of the macroscopic behavior of solid hetero-
geneous media with multi-materials is a very difficult task. In the multiscale tools in Z-set,
one distinct set of constitutive equations is attributed to each sub-volume, which are treated
independently. Each sub-volume then possesses its own stress/strain tensor. The macroscopic
behaviour is obtained by averaging the corresponding non-uniform local behaviour law using
the well-known homogenization schemes. Consequently, it is possible to mix different types
of constitutive equations for each sub-volume. In principle, all mechanical Z-mat models can
be used in the multi-mat model, including other multi-mat models themselves.

Multiscale tools in Z-set, are called “Multimat” for static interface and “Phase-field” for
dynamic interface, with additional evolution equation related to the interface mobility.
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Imbricated finite element method (FE2 model)

Imbricated finite element method (FE2 model)

This model has been developed during the past few years [Feyel] in order to directly replace
the constitutive equations (at the structural scale). At each Gauss point of the structural scale,
the constitutive equations are thus replaced by an other finite element computation at the
composite scale. The figure bellow shows the schematic principle of the FE2 approach :

• finite element computation at the structural scale which delivers the macroscopic strain
E,

• localization which determines the local strain field at the fiber/matrix scale ε,

• a finite element computation which delivers the local stress field σ,

• homogenization of σ to compute the macroscopic stress Σ.
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Equilibrium and compatibility at the structural level

Any localization/homogenization scheme can be used, but in the specific SiC/Ti case, the
regular position of the fiber into the matrix allows to use the classical periodic homogeniza-
tion.
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Imbricated finite element method (FE2 model)

Localization/homogenisation scheme:
Description:

Two files are necessary, the first one periodic.mat is defined in the **material section of
the macroscopic problem and the second one file_local is defined in the **local section
of the periodic.mat file.

Syntax:
This is the syntax of the periodic.mat file.

***behavior mmc_fe2

**local periodic

**file file name ]

[**update_tg_matrix tg matrix option ]

[**import name name dest ]

where file_name is the name of the file where the localization options are indicated.
The import option specifies which macroscopic parameters must imported in the microscopic
problem. name is the name of the parameter in the macroscopic problem and name dest is
its name in the microscopic problem.

Syntax:
This is the syntax of the **file file_name file.

**convergence ctype
**reinit itype
**maxiter maxiter
**ratio ratio
**local_problem local name
**localization ltype

*impose_elset_dof elset name
*macro_E_size Esize

*homogeneisation htype
*macro_flux_size Fsize

**convergence give the convergence type : absolu, automatic

**reinit (see ***sequence)

**maxiter maximum number of iteration to solve the microproblem.

**ratio specify the maximum global ratio for the convergence.

**localisation method of localisation form the macroscopic scale to the microscopic scale.
Two types : to_periodic_plane_strain or to_general_periodic_plane_strain.

*macro_E_size size of the macroscopic strain tensor (4 in 2D or 6 in 3D.

**homogeneisation method of homogenisation. Two types : classic_2d or classic_3d

*macro_flux_size size of the macroscopic stress tensor.

Z-set — Non-linear material
& structure analysis suite 1.4



Imbricated finite element method (FE2 model)

Example of a FE2 test:

Macroscopic problem:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% This is the macroscopic problem %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

****calcul

***mesh **predefined rve2d

***resolution newton

**sequence 1

*time 0.5

*increment 1O

*ratio .1

*algorithm p1p2p3

*iteration 100

***bc

**impose_element_dof 1 E11 1. time

***material *file periodic.mat

***output

**test

*precision 5

*small 1.e-8

*gauss_var 1 1 eto11 eto22 eto33 eto12 sig11 sig22 sig33 sig12

****return

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% This is the periodic.mat file %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

***behavior mmc_fe2

**local periodic

**file file_local

**update_tg_matrix ask_localization

***return

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% This is the file_local file %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

**convergence absolu

**reinit p1p2p3

**maxiter 1000

**ratio .005

**local_problem micro

**localisation to_general_periodic_plane_strain

*impose_elset_dof ALL_ELEMENT

*macro_E_size 4

**homogeneisation classic_2d

*macro_flux_size 4

***return
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Imbricated finite element method (FE2 model)

Microscopic problem:
Description:

This part is the description of the microscopic problem. No comment, see ****calcul.

****calcul

***mesh

**elset ALL_ELEMENT periodic_general_plane_strain

periodic_info total_displacement_field

***linear_solver frontal

***resolution

**sequence

*ratio absolu 0.001

*time 1.

*increment 30

*algorithm eeeeee

***bc

**impose_nodal_dof

centre U1 0.

centre U2 0.

ALL_NODE U3 0.

***equation

**mpc2 gauche U1 droite U1

**mpc2 gauche U2 droite U2

**mpc2 haut U1 bas U1

**mpc2 haut U2 bas U2

**mpc2 bg U1 bd U1

**mpc2 bg U2 bd U2

**mpc2 bg U1 hg U1

**mpc2 bg U2 hg U2

**mpc2 bg U1 hd U1

**mpc2 bg U2 hd U2

***material

**elset fibre

*file fibre

**elset matrice

*file matrix

***output

**test

*precision 5

*small 1.e-8

*gauss_var 1 1 eto11 eto22 eto33 eto12 sig11 sig22 sig33 sig12

****return

Z-set — Non-linear material
& structure analysis suite 1.6



General TFA Method

General TFA Method

In this section, we recall the main line of the Transformation Field Analysis method introduced by
Dvorak et al. [Dvorak, 1992]. This method is very similar to the FE2 one (1. localization, 2.constitutive
equations at the local scale, 3. homogenization), but it is technically very different. The TFA method
is based on concentration and influence tensors and considers the plastic strain and thermal expansion
as eigenstrains of the same nature. The composite scale is divided into a number of sub-volumes (N)
inside which the mechanical fields are assumed to be uniform. A sub-volume r is thus a homogeneous
part of the representative volume element. The TFA models link the local fields (σr and εr) to the
macroscopic ones (Σ and E) with the following relations :

σr = Br : Σ−
N∑
s=1

F rs : Ls : γs (1)

εr = Ar : E +

N∑
s=1

Drs : γs (2)

with

γr = εr − εer = εpr + εthr (3)

where γr is the formal eigenstrain. Ar and Br are the elastic strain and stress concentration
tensors respectively (fourth rank tensors) of the sub-volume Vr. F rs and Drs are the transformation
influence tensors (fourth rank tensors); the subscript rs denotes the influence of the sub-volume s on
the sub-volume r. These are determined by solving a set of linear problems (6 for the concentration
tensors and 6*N for the influence tensors) by a finite element method. These tensors are function of
the elastic behavior of each sub-volume and the shape of the VER. εths and εps denote the uniform
thermal and plastic strain of the sub-volume s.

In the general case with varying local elastic behavior (temperature or damage induced), the formal
eigenstrain γr is determined from the specification of the current state of the sub-volume, which can
be generalized to take into account the thermal and damage effects on the elastic behavior. This
generalized eigenstrain and the local behavior are obtained as follows,

γr = εr − εer = εpr + εthr + εdr and σr = L̃(T )r : (εer) = L0
r : (εr − γr) (4)

where L̃(T )r is the thermally dependent and/or damaged elastic stiffness, which is related to the
actual state of the sub-volume r and L0

s is the initial undamaged matrix, which is independent of
temperature. {

γr = εpr + εthr if L̃(T )r = Lr
γr = εpr + εthr + εdr if L̃(T )r 6= Lr

and the eigenstrain related to the damage effect can be rewritten as follows :

εdr = (I − L̃(T )
−1

r : L0
r) : εe = εgr = (S̃r − S0

r) : σr (5)

where S̃r and S0
r are respectively the actual and initial compliance of the sub-volume r.

It is important to note that damage or thermal change in the elastic modulus makes the eigenstrain
not only a function of the plastic and thermal strain but also a function of the elastic strain. This
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General TFA Method

dependence along with rate independent plasticity will make a two way coupling between all the
local total strain rates and all the eigenstrains. In addition, various physical effects must be take
into account, like the interaction between the interface on dislocation movement and the effects of
the incoherent interface with the discontinuity of the displacements, in order to obtain a good local
strain/stress redistributions, as well as a correct stress-strain behavior.

The TFA method is then considered in conjunction with the “Generalized Eigenstrain Model”,
where corrected constitutive eigenstrain βr is introduced and expressed in terms of the formal eigen-
strain plus a correction:

βr = γr + ξr (6)

Here the eigenstrain βr is to be considered as an internal variable which must be assigned an evolution
law, which can be tuned to fit the available data.

This evolution law is associated either with a stress localization or with a strain localization law
but not both. In this case, the stress localization and the strain localization can be written as follows:

Strain localization :
εr = Ar : E +

n∑
s=1

[Dsr : γs +Esr : ξs] where Esr = Dsr

σr = Br : Σ−
n∑
s=1

F sr : Ls : βs −Lr : (γr − βr)−Br :

n∑
s=1

csLs : (γr − βr)

Stress Localization :
εr = Ar : E +

n∑
s=1

[Dsr : γs +Esr : ξs] where Esr = Dsr − δsrI − crAs

σr = Br : Σ−
n∑
s=1

F sr : Ls : βs

where cr is the volume fraction of the sub-volume r (cr = Vr/V ).
The macroscopic behavior (macroscopic strain Σ and stress E) can be obtained by averaging the

local stresses (σr) and strain (εr) on the RVE :

Σ =

〈
σ(x)

〉
V

=
∑
r

crσr , E =

〈
ε(x)

〉
V

=
∑
r

crεr (7)

Syntax:

***behavior general_tfa

**material volume fraction name | **material_in_file <file>

*file file name
[*integration method ]

[*rotation <ROTATION> ] | [*rotation_list <file> ]

[*volume_fraction_file <file> ]

**material etc ...
**localization <LOCALIZATION1>

[**solver tfa implicit1 ]

[**reference_temperature double ]

[**eigenstrain <EIGENSTRAIN> ]

***return
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General TFA Method

**material specify the different sub-volumes and its volume fractions. The number of **material
is equal to the number of sub-volumes.

**material in file give the name of the external file where the different sub-volumes are defined. This
file name is relative to the current working directory. Using **material, just one sub-volume
can be specified whereas when **material_in_file is used, many sub-voumes can be defined.

**localization specify the localization method for determining the strain and stress concentration
tensors (Ar,Br) as well as the transformation influence tensors (Dsr,F sr)

**eigenstrain define the evolution law for the eigenstrain variable, which is considered as an internal
variable. It has the dimension of a strain.

**solver A consistent tangent matrix is provided with this model if implicit integration is chosen,
and the sub-materials have a consistent tangent.

The options *rotation_list or **volume_fraction_file only available when using
**material_in_file.

Example:

***behavior general_tfa

**solver tfa_implicit1

**localization polycrystal

C 50000.0

**eigenstrain beta

D 10000.0

**material 0.2 grain1

*file poly_trac_2.inp 2

*rotation -149.676 15.61819 154.676

*integration theta_method_a 1. 1.e-9 200

**material 0.3 grain2

*file poly_trac_2.inp 2

*rotation -210.324 15.61819 205.324

*integration theta_method_a 1. 1.e-9 200

**material 0.5 grain3

*file poly_trac_2.inp 2

*rotation -94.2711 35.46958 171.271

*integration theta_method_a 1. 1.e-9 200

***return

This is an example of the TFA behavior with three sub volumes (grain1, grain2 and grain2)
with respective volume fractions 0.2, 0.3 and 0.5, using the polycrystal localization rule.

Z-set — Non-linear material
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***behavior berveiller zaoui

***behavior berveiller zaoui

This behavior defines a model, proposed by Berveiller and Zaoui, as a general formulation of the
self-consistent scheme [Berv78]. This model is specified for an isotropic elasto-plastic intergranular
accommodation for plastically-flowing polycrystals.

σij = Σij + 2αµ(1− β)(Epij − ε
p
ij) where β =

2(4 + 5ν)

15(1− ν)
(8)

α =
1 + 6µh(1 + ν)/(7− 5ν)

1 + 2µh(13− 5ν)/15(1− ν) + 8µ2h2(1 + ν)/15(1− ν)
and h =

3Ep

2Σ
(9)

where Σij is the uniform applied stress, σij is the uniform stress in one specified grain, Epij is the
equivalent macroscopic plastic strain and εpij is the uniform plastic strain in the same grain.

Syntax:

***behavior berveiller_zaoui

**mu double
**nu double
[**simplified ]

**material volume fraction name | **material_in_file <file>

*file file name
[*integration method ]

[*rotation ROTATION ] | [*rotation_list <ROTATION> ]

[*volume_fraction_file <file> ]

**material etc ...
***return

*mu is the Lame’s coefficient µ.

*nu is the Poisson’s ratio ν.

*simplified This option allows the use of an approximate expression of α, which is α = 1/(1 + µh),
instead of the equation given above Eq. (9).

Example:

***behavior

**mu 75000.

**nu 0.3

**simplified

**material 1.000000e+00 grain1

*file trac_bz.inp 2

*rotation -1.496760e+02 1.561819e+01 1.546760e+02

**material 1.000000e+00 grain2

*file trac_bz.inp 2

*rotation -1.506460e+02 3.386400e+01 1.556460e+02

**material 1.000000e+00 grain3

*file trac_bz.inp 2

*rotation -1.371380e+02 4.159170e+01 1.421380e+02

***return
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***behavior beta multimat

***behavior beta multimat

This method considers piecewise constant eigenstrain in each material phase and proposes a local-
ization rule for each material sub-volume [Cail92]. The total strain tensor in each phase is computed
according to:

ε̇∼i = ε̇∼
p
i + Ė∼ − Ė∼

p +
(
L∼∼i

)(
Ḃ∼ − β̇∼i

)
where βi is the eigenstrain in the sub-volume i and Ḃ∼ is deduced from the following equation:

Ḃ∼ =
〈
L∼∼i

〉−1 〈(
L∼∼
ci

)
: β̇

∼
i

〉
and < u > denotes the volume average of u.

Syntax:

***behavior beta_multimat

**material volume fraction name | **material_in_file <file>

*file file name
[*integration method ]

[*rotation ROTATION ] | [*rotation_list <ROTATION> ]

[*volume_fraction_file <file> ]

**material etc ...
**beta name <BETA_TFA>

**localization name <LOCALIZATION2>

***return

**localization specify localization rule for calculating the strain localisation tensor L∼∼
.

**beta define the evolution law for the β internal variable in each sub-volume.

The localization rule and the evolution law must be defined for each volume. If the different sub-
volumes have the same localization rule or the same evolution rule, it is possible to use ”all” instead
of specifying the names of sub-volumes after **beta and **localization. In this case, **beta and
**localization must be defined before behaviors.

Example:

***behavior beta_multimat

**beta all delta D 300. delta 0.3

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

In this example, both phases austen and ferrit have the same evolution law for $\beta$

variable (**beta). Thus, the option "all" is used and the **beta is defined before

behaviors (**material).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

**material .7 austen

*file bugat1.austenite

*rotation x3 -0.166667 0.649830 0.741582

x1 -0.074915 0.741582 -0.666667

**material .3 ferrit

*file bugat1.ferrite

**localization austen kroner poisson 0.3 ratio 1.

**localization ferrit kroner poisson 0.3 ratio 1.

***return
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***behavior beta multimat

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

beta_test1.mat

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

***behavior beta_multimat

**localization all voigt mu 10100.

**material .5 gr1

*file beta_test1.mat 2

*rotation -149.060000 18.010000 164.060000

**beta gr1 delta D 300.0 delta 0.3

**material .5 gr2

*file beta_test1.mat 2

*rotation -.060000 18.010000 164.060000

**beta gr2 delta D 300.0 delta 0.3

***return
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***behavior voigt/voigt fs

***behavior voigt/voigt fs

This behavior provides the Voigt/Taylor homogenization scheme, applied to multi-phase or multi-
constituent heterogeneous materials. This model, which is also referred to as the uniform strain
model, assumes a uniform total strain field among each sub-volume and the homogeneous macroscopic
medium:

E = ε1 = ε2 = . . . = εn

(10)

Σ = f1σ1 + f2σ2 + . . .+ fnσn

where E and Σ are respectively the macroscopic strain and stress tensors. εi and σi are respectively
the local total strain and stress in the sub-volume i. The volume fraction of sub-volume i is denoted
by fi and n is the number of sub-volumes.

Syntax:

***behavior voigt

**material volume fraction name | **material_in_file <file>

*file file name
[*integration method ]

[*rotation ROTATION ] | [*rotation_list <ROTATION> ]

[*volume_fraction_file <file> ]

**material etc ...
***return

Example:

***behavior voigt

%%%%%%%%%% Large deformation %%%%%%%%%%

%***behavior voigt_fs

%For the large deformation, the keyword "voigt\_fs" must be used instead of "voigt".

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

**material 0.5 m1

*file voigt_elas2.inp 2

**material 0.5 m2

*file voigt_elas2.inp 3

***return

***behavior linear_elastic

**elasticity young 200000. poisson 0.3

***return

***behavior linear_elastic

**elasticity young 100000. poisson 0.3

***return
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***behavior phasefield phic

***behavior phasefield phic

Description:

The present model belongs to the class of diffuse interface models, where the local state of an inho-
mogeneous microstructure is described by a conservative concentration field c and a non-conservative
field φ [Amm10], the so-called order parameter. In the phase field approach, the free energy density for
an inhomogeneous system can be approximated by the Ginzburg-Landau coarse-grained free energy
functional, which contains a chemical free energy density fch(c, φ) and a gradient energy term:

f(c, φ) = fch(c, φ) +
α

2
∇φ.∇φ

The usual specific quadratic contribution with respect to ∇φ is related to the interfacial energy. The
state laws and the complementary evolution laws for the phase field and chemical contributions are
the following:

µ =
∂f

∂c
=
∂fch
∂c

ξ =
∂f

∂∇φ
= α ∇φ

J = −L(φ)∇µ = −L(φ)∇(
∂f

∂c
) π = −β φ̇− ∂f

∂φ

where µ is the chemical potential.

L(φ) is the Onsager coefficient, related to the chemical diffusivities D1 and D2 in both phases by
means of the interpolation function h(φ) as:

L(φ) = h(φ)D1/k1 + (1− h(φ))D2/k2

β material parameter, which is inversely proportional to the interface mobility.

α composition gradient energy coefficient.

The evolution equations for order parameter and concentration are respectively based on the time-
dependent Ginzburg-Landau and usual diffusion equations, which are:

∇.ξ + π = −βφ̇+∇.(α∇φ)− ∂fch

∂φ
= 0

ċ = −∇.(−L(φ)∇µ) = −∇.
[
−L(φ)

(
∇∂fch

∂c

)]
Stored Variables:
prefix size description default

dC V Concentration gradient yes
J V Concentration flux yes
dphi V Order parameter gradient yes
xi V Microstress yes
pi S Internal microforce yes
C S the concentration yes
phi S Order parameter yes

Syntax:
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***behavior phasefield phic

***behavior phasefield_phic

**energy <ENERGY>

...

**kinetics

*mobility COEFFICIENT

**chemical_interpolating_function val

**energy this option will be much more detailed in the <ENERGY> section.

**kinetics give the β coefficient.

**chemical interpolating function define the polynomial degree of interpolating function. Tree
choices are availables.

CODE DESCRIPTION
0 h(φ) = φ

1 h(φ) = φ2(3− 2φ)

2 h(φ) = φ3(6φ2 − 15φ+ 10)

Example:

***behavior phasefield_phic

**energy kim

*phase1

c1 0.7

b1 0.0

k1 1.

D1 0.1

*phase2

c2 0.3

b2 0.0

k2 1.

D2 0.1

*interface

energy 1.

thickness 0.25

zeta 0.05

ENER 0.5

**kinetics

*mobility 1.

**chemical_interpolating_function 1.

***return
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***behavior elastic phasefield

***behavior elastic phasefield

Description:
For elastic phasefield behaviour displacement u, concentration c and order parameter φ are the
degrees of freedom of the system. Finding φ(X, t), c(X, t), ~u(X, t)), ∀(X, t > 0) will be done by solving
the system of equation.

c(X, 0) = c0(X)

φ(X, 0) = φ0(X)

∀(t > 0, φ∗(X), c∗(X))

∫
V

(πφ∗ − ξ.∇φ∗)dv +

∫
∂V

ζφ∗ds = 0 (1)

∫
V

(ċc∗ − J.∇c∗)dv +

∫
∂V

jc∗ds = 0 (2)

∫
V

(−Σ∼ : ∇u∗ − ~f.u∗)dv +

∫
∂V

~t.u∗ds = 0 (3)

The free energy density for the coupled phase field/diffusion/mechanical problem can be approxi-
mated by the Ginzburg-Landau coarse-grained free energy functional, which contains a chemical free
energy density fch(c, φ), an elastic free energy density fe(φ, c, ε∼) and a gradient term.

f(φ,∇φ, c,E∼
e) = fch(φ, c) + fe(φ, c,E∼

e) +
α

2
∇φ.∇φ

In addition to the chemical state laws, which is defined in the phasefield phic behavior, the
strain-stress relationship in the homogeneous effective medium obeys Hooke’s law as follows

Σ∼ =
∂f

∂ε∼
= C∼∼

(φ, c) : (E∼ −E∼
?(φ, c))

where E∼ and Σ∼ are respectively the macroscopic strain and Cauchy stress quantities.
The effective elasticity tensor C∼∼

and the effective eigenstrain E∼
? due to phase transformation are

presented in the <HOMOGENIZATION> section.

Stored Variables:
prefix size description default

sig T-2 Cauchy stress yes
eto T-2 Total (small deformation) strain yes
eel T-2 Elastic strain yes
defo tr T-2 Effective eigenstsrain no
dC V Concentration gradient yes
J V Concentration flux yes
dphi V Order parameter gradient yes
xi V Microstress yes
pi S Internal microforce yes
C S the concentration yes
phi S Order parameter yes

Syntax:
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***behavior elastic phasefield

***behavior elastic_phasefield

**energy <ENERGY>

...

**kinetics

*mobility COEFFICIENT

**chemical_interpolating_function val
**mechanical_interpolating_function val
**homogenization <HOMOGENIZATION>

**phase1

*elasticity1 <ELASTICITY>

...

*eigen_coeff1 double
[*delta1 double ]

[*c_ref1 double ]

**phase2

*elasticity2 <ELASTICITY>

...

*eigen_coeff2 double
[*delta2 double ]

[*c_ref2 double ]

**mechanical interpolating function Defines the polynomial degree of interpolating function.
Tree choices are availables.

CODE DESCRIPTION
0 hu(φ) = φ

1 hu(φ) = φ2(3− 2φ)

2 hu(φ) = φ3(6φ2 − 15φ+ 10)

**homogenization This option will be detailed in the <HOMOGENIZATION> section.

**phase1 Definition of the material elastic parameters and eigenstrain induced by variation of
concentration.

**phase2 Identical as **phase1

The eigenstrain in the phase i is defined as follow

ε∼
∗
i = (eigen coeffi + deltai(c− c refi))1∼, where i = {1, 2}

Example:

***behavior elastic_phasefield

**energy kim

*phase1

c1 0.7

b1 0.0

k1 1.

D1 0.1

*phase2

c2 0.3

b2 0.0
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k2 1.

D2 0.1

*interface

energy 1.

thickness 0.25

zeta 0.05

ENER 0.5

**kinetics

*mobility 1.

**chemical_interpolating_function 1.

**mechanical_interpolating_function 1.

**homogenization Khachaturyan

**phase1

*elasticity1

young 70000.

poisson 0.3

*eigen_coeff1 0.000

*delta1 0.0015

*c_ref1 0.

**phase2

*elasticity2

young 70000.

poisson 0.3

*eigen_coeff2 0.000

*delta2 0.0015

*c_ref2 0.

***return
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***behavior plastic phasefield

Description:

In the proposed model, the total free energy is postulated to have the form of a Ginzburg-Landau
free energy functional accounting for interfaces through the square of the order parameter gradient.
The total free energy F of the body is then defined by the integral over the volume V of a free energy
density f , which can be split into a chemical free energy density fch, a coherent mechanical energy
density fu, and the square of the order parameter gradient:

F (φ,∇φ, c,E∼
e, Vk) =

∫
V

f(φ,∇φ, c,E∼
e, Vk) dv

=

∫
V

[
fch(φ, c) + fu(φ, c,E∼

e, Vk) +
α

2
|∇φ|2

]
dv (11)

Vk is the set of internal variables for the phase k in order to describe the hardening state in each phase
and E∼

e is the effective elastic strain tensor.
The irreversible behaviour is described by the introduction of a dissipation potential, which can

be split into three parts, which are the phase field part Ωφ(φ, c) , the chemical part Ωc(φ, c) and the
mechanical dissipation potential Ωu(φ, c,Σ∼ , Ak):

Ω(φ, c,Σ∼ , Ak) = Ωφ(φ) + Ωc(c) + Ωu(φ, c,Σ∼ , Ak)

Ak is the set of thermodynamic forces associated with the internal variables Vk and Σ∼ is the effective
macroscopic strain for the phase k.

The chemical free energy density fch of the binary alloy is a function of the order parameter φ and
of the concentration field c, which is much more described in the <ENERGY> section. The second
contribution to the free energy density is due to mechanical effects. Assuming that elastic behaviour
and hardening are uncoupled, the mechanical part of the free energy density fu is decomposed into a
coherent elastic energy density fe and a plastic part fp as:

fu(φ, c,E∼
e, Vk) = fe(φ, c,E∼

e) + fp(φ, c, Vk)

In the proposed model, we consider that the system consists of a two-phase elastoplastic binary
alloy 1 and 2, which are separated by a plane diffuse interface, with one non-linear isotropic hardening
and one non-linear kinematic hardening in each phase. The specific free energy taken as the state
potential of the material is chosen as a function of all state variables. Assuming again that there is
no coupling between elasticity and hardening, the free energy is split into three terms, corresponding
to the elastic energy, the kinematic hardening part and the isotropic part. To satisfy the condition
of thermodynamic stability, it is sufficient to choose a positive definite quadratic function in the
components of elastic strain tensor and all internal state variables as follows:

fk =
1

2
(ε∼k − ε∼

?
k) : C∼∼ k

: (ε∼k − ε∼
?
k) +

1

3
Ckα∼k : α∼k +

1

2
bkQkr

2
k

bk, Qk and Ck are the material parameters for isotropic and kinematic hardening states and k =
{1, 2} corresponding to the two phases. Consequently, the Cauchy stress tensor and the associated
thermodynamic force variables X∼ and R for the phase k are deduced as follows:

σ∼k =
∂fek
∂ε∼k

= C∼∼ k
: ε∼
e , Rk =

∂fpk
∂rk

= bkQkrk , X∼ k =
∂fpk
∂α∼k

=
2

3
Ckα∼k

The partition hypothesis requires a decomposition of the total strain in each phase into elastic, eigen
and plastic parts:

ε∼1 = ε∼
e
1 + ε∼

?
1 + ε∼

p
1 and ε∼2 = ε∼

e
2 + ε∼

?
2 + ε∼

p
2
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***behavior plastic phasefield

where the local parameter for each phase may depend on the local concentration c, but not on order
parameter φ.

Furthermore, the mechanical dissipation is assumed to be due to three mechanisms: the inelastic
strain, the kinematic hardening and the isotropic hardening. Thus, the dissipation potential can be
split into a plastic contribution, which is called the yield function, a nonlinear kinematic hardening
term and a nonlinear isotropic hardening term and can be expressed as a convex scalar valued function
as follows :

Ωuk(σk,X∼ k, Rk) = gk(σ∼k,X∼ k, Rk) +
3Dk

4Ck
X∼ k : X∼ k +

R2
k

2Qk

Assuming that the elastoplastic phase field behaviour of each phase is treated independently, we define
a yield function for each phase as:

gk(σk,X∼ k, Rk) = σeq
k −Rk−σ

0
k where σeq =

√
3

2
(s∼k −X∼ k) : (s∼k −X∼ k) and s∼k = σ∼k−

1

3
Traceσ∼k1∼

with σ0
k is the initial yield stress, σeq

k is the von Mises equivalent stress and s∼k is the deviatoric stress
tensor.

According to the normality rule for standard materials, the evolution laws of the internal variables
are derived from the dissipation potential. For phenomena which do not depend explicitly on time,
such as rate independent plasticity, the potential is not differentiable. Then, the partial derivative of
Ωk with respect to g is simply replaced by a plastic multiplier λ̇ to write a rate independent plastic
model. Consequently, the evolution laws can be expressed as:

ε̇∼∼
p
k =

∂Ωuk
∂σ∼k

= λ̇kn∼k, ṙk =
∂Ωuk
∂Rk

= λ̇k

(
1− Rk

Qk

)
, α̇∼k =

∂Ωuk
∂Xk

= λ̇k

(
n∼k −

3Dk

2Ck
X∼ k

)
where n∼k = ∂gk/∂σ∼k is the normal to the yield surface and defines the flow direction and the plastic

multiplier λ̇ is determined from the consistency condition dgk/dt = 0 1.
The elastoplastic and phase field behaviours of each phase are treated independently and the

effective behaviour is obtained using homogenization relation. In the proposed model, the Voigt’s
scheme is used, where the basic assumptions are that the strain field is uniform among the phases at
each material point. Using Voigt’s model, we assume a uniform total strain at any point in the diffuse
interface between elastoplastically inhomogeneous phases. The effective stress is expressed in terms of
the local stress average with respect to both phases weighted by the volume fractions:

Σ∼ = φσ∼1 + (1− φ)σ∼2 , E∼ = ε∼1 = ε∼2

The stresses of both phases σ∼1 and σ∼2 are given by Hooke’s law for each phase:

σ∼1 = C∼∼ 1 : (ε∼1 − ε∼
?
1 − ε∼

p
1) , σ∼2 = C∼∼ 2 : (ε∼2 − ε∼

?
2 − ε∼

p
2)

where C∼∼ 1 and C∼∼ 2 are respectively the tensor of elasticity moduli in 1 and 2 phases.
The stress at any point in the interface is computed from the average of the above local stresses

as follows:

Σ∼ = φC∼∼ 1 : (ε∼1 − ε∼
?
1 − ε∼

p
1) + (1− φ)C∼∼ 2 : (ε∼2 − ε∼

?
2 − ε∼

p
2)

From the above relation, it follows that the strain-stress relationship in the homogeneous effective
medium obeys Hooke’s law with the following equation:

Σ∼ = C∼∼ eff : (E∼ −E∼
p −E∼

?)

1The first consistency condition, gk = 0, means that the state of stress is on the actual yield surface, the
second ġk = 0, means that an increase of the state of stress stays on the yield surface. Elastic unloading occurs
when gk < 0 or ġk < 0 , the internal variables then keeping a constant value.
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where the effective elasticity tensor C∼∼ eff is obtained from the mixture rule of the elasticity matrix for
both phases:

C∼∼ eff = φC∼∼ 1 + (1− φ)C∼∼ 2

and the effective eigenstrain E∼
? and plastic strain E∼

p vary continuously between their respective values
in the bulk phases as follows:

E∼
? = C∼∼

−1
eff : (φC∼∼ 1 : ε∼

?
1 + (1− φ)C∼∼ 2 : ε∼

?
2)

E∼
p = C∼∼

−1
eff : (φC∼∼ 1 : ε∼

p
1 + (1− φ)C∼∼ 2 : ε∼

p
2)

In the case of nonhomogeneous elasticity, it must be noted that E∼
? and E∼

p are not the average of their
respective values for each phase.

According to the Voigt homogenization theory, the local energy stored in the effective homogeneous
elastic material is expressed in terms of the average value of the local elastic energy with respect to
both phases weighted by their volume fractions:

fe(φ, c,E∼) = φ fe1(c, ε∼
e
1) + (1− φ)fe2(c, ε∼

e
2) =

1

2
(E∼ −E∼

? −E∼
p) : C∼∼ eff : (E∼ −E∼

? −E∼
p)

and

fp(φ, c, Vk) = φ fp1(c, α∼α) + (1− φ)fp2(c, α∼β)

Similary, the irreversible part of the mechanical behaviour for effective material is defined with
respect to the mechanical dissipation potentials Ωu1(c, σ∼1, A1) and Ωu2(c, σ∼2, A2) for 1 and 2 phases
respectively by means of the shape function φ as:

Ωu(φ, c,Σ∼ , Ak) = φΩu1(c, σ∼1, A1) + (1− φ) Ωu1(c, σ∼2, A1)

Stored Variables:
prefix size description default

C S the concentration yes
phi S Order parameter yes
dC V Concentration gradient yes
dphi V Order parameter gradient yes
J V Concentration flux yes
xi V Microstress yes
pi S Internal microforce yes
sig T-2 Cauchy stress yes
eto T-2 Total (small deformation) strain yes
eel T-2 Elastic strain yes
ep T-2 Effective inelastic strain yes
sig1 T-2 Cauchy stress yes
ep1 T-2 Inelastic strain for the first phase yes
eel1 T-2 Elastic strain for the first phase yes
alpha1 T-2 kinematic hardening internal variable for

the first phase
yes

epcum1 V cumulated plasticity equivalent for the first
phase

yes

sig2 T-2 Cauchy stress yes
ep2 T-2 Inelastic strain for the second phase yes
eel2 T-2 Elastic strain for the second phase yes
alpha2 T-2 kinematic hardening internal variable for

the second phase
yes

epcum2 V cumulated plasticity equivalent for the sec-
ond phase

yes
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Figure 1: Integration of constitutive equations for Voigt/Taylor scheme. p1 and p2 are respec-
tively the accumulated plastic strain in 1 and 2 phases
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Syntax:

***behavior plastic_phasefield

**energy <ENERGY>

**kinetics

*mobility COEFFICIENT

**chemical_interpolating_function val
**mechanical_interpolating_function val
**homogenization [name]

**phase1

*elasticity1 <ELASTICITY>

*eigen_coeff1 COEFFICIENT

*delta1 COEFFICIENT

*c_ref1 COEFFICIENT

*plastic

R01 COEFFICIENT.
B1 COEFFICIENT

Q1 COEFFICIENT

C1 COEFFICIENT

D1 COEFFICIENT

**phase2

*elasticity2 <ELASTICITY>

*eigen_coeff2 COEFFICIENT

*delta2 COEFFICIENT

*c_ref2 COEFFICIENT

*plastic

R02 COEFFICIENT

B2 COEFFICIENT

Q2 COEFFICIENT

C2 COEFFICIENT

D2 COEFFICIENT

**phase1 Definition of the material elastic parameters and eigenstrains induced by variation of
concentration. The eigenstrains are defined as follow ε∼

∗ = (eigen coeff1+delta1(c−c ref1))1∼

**phase2 Identical as **phase1

Example:

***behavior plastic_phasefield

**energy kim

*phase1

c1 0.7

b1 0.0

k1 1.

D1 0.1

*phase2

c2 0.3

b2 0.0

k2 1.

D2 0.1

*interface

energy 1.
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thickness 0.25

zeta 0.05

ENER 0.5

**kinetics

*mobility 1.

**chemical_interpolating_function 1.

**mechanical_interpolating_function 1.

**phase1

*elasticity1

young 70000.

poisson 0.3

*eigen_coeff1 0.001

*delta1 0.0015

*c_ref1 0.

*plastic

R01 15.

B1 0.

Q1 0.

C1 0.

D1 0.

**phase2

*elasticity2

young 70000.

poisson 0.3

*eigen_coeff2 0.000

*delta2 0.0015

*c_ref2 0.

*plastic

R02 70000000.

B2 0.

Q2 0.

C2 0.

D2 0.

***return
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<BETA TFA>

<BETA TFA>

Description:

This object class is used for specifying the evolution laws of β
∼

variable. This variable has the
dimension of a strain and is to be considered as an internal variable in each sub-volume.

The following types of evolution laws of β
∼

variable may be chosen:

CODE DESCRIPTION

beta d β̇s = ε̇ps −Dsṗsβs −
det(ε̇ps) P

ṗ2
s

I

beta matrix β̇s = ε̇ps −DsṗsSs : βs

kroner β̇s = ε̇ps

delta β̇s = ε̇ps −Dṗs(βs − δεps)−
det(ε̇ps) P

ṗ2
s

I

free β̇s = ε̇ps − Cbṗsβs +
det(ε̇ps)Ce3

ṗ2
s

I

where det(A) represents the determinant of a matrix A. P is the extreme pressure and ṗs is the rate

of accumulated plastic strain ṗs =

√
2

3
(ε̇ps : ε̇ps).

Syntax:
The syntax for a BETA TFA object requires that a name of the sub-volume must be given, followed
by the type and whatever coefficients are allowed for the corresponding model.

beta d

**beta name beta_d

D <double>

[pressure <double>]

beta matrix

**beta name beta_matrix double

poisson <double>

ratio <double>

kroner

**beta name kroner

delta

**beta name delta

D <double>

delta <double>

[pressure <double>]
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free

**beta name free

Ce3 <double>

Cb <double>
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<EIGENSTRAIN>

<EIGENSTRAIN> beta

Description:
This object class provides the eigenstrain models in general TFA framework. It is used to define the
evolution law of the “eigenstrain” which is the strain measure of mismatch between phase locations:

β̇r = ε̇pr −D(βr − ωεpr)||ε̇
p
r ||

ξ̇r = −D(ξr + (1− ω)εpr)||ε̇
p
r ||

Syntax:

**eigenstrain beta
D double
[omega double ]
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<ENERGY>

<ENERGY>
Description:

This class is used for specifying the chemical free energy density in phase field model fch(c, φ) and

to calculate its partial derivatives
∂fch

∂c
,
∂fch

∂φ
,
∂2fch

∂φ2
,
∂2fch

∂c2
,
∂2fch

∂c∂φ
...

The chemical free energy density of binary alloy is a function of the order parameter φ and of the
concentration field c. In order to ensure the coexistence of both phases α and β discriminated by φ,
fch must be non-convex with respect to φ. Consequently, fch is split into a local homogeneous free
energy f0(c, φ), which is built with the free energy densities of the two phases f1 and f2 and a double
well potential accounting for the free energy penalty of the interface [Amm10]:

fch(φ, c) = f0(c, φ) +Wg(φ) where g(φ) = φ2(1− φ)2

where W is the height of the double-well barrier. Both material parameters W and α are calculated
in function of the interfacial energy σ and the interfacial thickness δ as

W = 6Λ
σ

δ
and α = 3

σλ

Λ
where Λ = ln[(1− ζ)/ζ]

The material parameter ζ specifies the way that the interface width δ has been defined, Assuming that
the interface region ranges from ζ to 1− ζ.

Syntax:
The basic input syntax here is:

**energy <ENERGY>

*phase1

c1 COEFFICIENT

b1 COEFFICIENT

k1 COEFFICIENT

D1 COEFFICIENT

*phase2

c2 COEFFICIENT

b2 COEFFICIENT

k2 COEFFICIENT

D2 COEFFICIENT

*interface

energy COEFFICIENT

thickness COEFFICIENT

zeta COEFFICIENT

ENER COEFFICIENT

*interface specify the material parameters related to the phase field interface, which are the interfacial
energy σ, the interfacial thickness δ and ζ

The following coefficients are available:

k1,k2 are respectively the curvatures of the local free energies f1 and f2 with respect to concentra-
tion.

b1,b2 are the heights of the free energies f1 and f2.

c1,c2 are the coherent equilibrium concentrations.

D1,D2 are the chemical diffusivities in both phases 1 and 2.
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CODE DESCRIPTION
kim Polynomial formulation of homogeneous free energy

afa Interpolating free energy densities

kim The chemical free energy density is a quadratic function of the concentration, where the chemical
free energies of the two phases are interpolated for intermediate values of φ with a polynomial
h(φ) varying in a monotonic way between both phases:

f0(φ, c) = h(φ)f1(c) + [1− h(φ)]f2(c)

where f1 and f2 are the chemical free energy densities of both phases, which have been described
by simple quadratic functions of the concentration c:

fi(c) =
1

2
ki(c− ai)2 + bi

where i = {1, 2} denotes phase 1 or 2.

afa This energy is obtained by a linear interpolation of the free energy parameters a(φ), b(φ) and
k(φ). It is summarised as:

f0(φ, c) =
1

2
k(φ)(c− a(φ))2 + b(φ)

where

a(φ) = a2 + ∆ah(φ), k(φ) =
k1k2

k1 + h(φ)∆k
and b(φ) = b2 +µeq

(
∆a+

(µeq)2∆k

2k̄

)
h(φ)

Z-set — Non-linear material
& structure analysis suite 2.6



<HOMOGENIZATION>

<HOMOGENIZATION>
Description:

This object class provides the way of introducing linear and nonlinear mechanical constitutive
equations into the standard phase field approach. In the region where both phases coexist, the local
behaviour in both phases is interpolated in order to replace an heterogeneous medium by an equivalent
homogeneous one [Amm10].

CODE DESCRIPTION

Voigt uniform strain field among the phases

Khachaturyan interpolation scheme

Voigt It is a Voigt model, which is also referred to as the uniform strain model. Its basic assumptions
are that the strain field is uniform among the phases. One distinct set of constitutive equations
is attributed to each individual phase k at any material point. Each phase at a material point
then possesses its own stress/strain tensor (σ∼1, ε∼1) and (σ∼2, ε∼2). The overall strain and stress
quantities Σ∼ ,E∼ at this material point must then be averaged or interpolated from the values
attributed to each phase, using the well-known results of homogenization theory. Following a
naive representation depicted in the figure below, each material point, i.e. V, within a diffuse
interface can be seen as a local mixture of the two abutting phases 1 and 2 with proportions
fixing V1 and V2 given by complementary functions of φ. It must be emphasized that this
representation involves the presence of fields Ψ1 and Ψ2 in phases 2 and 1 respectively, which
has no incidence on the bulk of those phases.

v
a

ri
a

b
le

 Ψ

Ψα

Ψβ

α phase β phaseinterface

να

νβ

ν

distance

ν = να

ν = νβ

Schematic illustration of the underlying material representative volume element
V = {V1 ∪ V2, V1 ∩ V2 = ∅} at each material point of a diffuse interface.

The local energy stored in the effective homogeneous elastic material is expressed in terms of the
average value of the local elastic energy with respect to both phases weighted by their volume
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<HOMOGENIZATION>

fractions:

fe(φ, c, ε∼) =
1

2
(E∼ −E∼

?) : C∼∼
: (E∼ −E∼

?) = hu(φ) fe1 + (1− hu(φ))fe2

where the elastic energy densities of 1 and 2 phases can be expressed as:
fe1 =

1

2
(E∼ − ε∼

?
1) : C∼∼ 1 : (E∼ − ε∼

?
1)

fe2 =
1

2
(E∼ − ε∼

?
2) : C∼∼ 2 : (E∼ − ε∼

?
2)

Using Voigt’s model, we assume a uniform total strain at any point in the diffuse interface
between elastoplastically inhomogeneous phases. The effective stress is expressed in terms of
the local stress average with respect to both phases weighted by the volume fractions:

Σ∼ = hu(φ)σ∼1 + (1− hu(φ))σ∼2 = C∼∼
: (E∼ −E∼

?) and E∼ = ε∼1 = ε∼2

where the effective elasticity tensor C∼∼
is obtained from the mixture rule of the elasticity matrix

for both phases and the effective Eigenstrain E∼
? vary continuously between their respective

values in the bulk phases as follows:

C∼∼
= hu(φ) C∼∼ 1 + (1− hu(φ))C∼∼ 2

E∼
? = C∼∼

−1 : (hu(φ) C∼∼ 1 : ε∼
?
1(c) + (1− hu(φ))C∼∼ 2 : ε∼

?
2(c))

Khachaturyan It is an interpolation scheme, where the material behaviour is described by a unified
set of constitutive equations that explicitly depend on the concentration or the phase variable.
Each material parameter is usually interpolated between the limit values known for each phase.
Linear mixture interpolations are adopted respectively for eigenstrain and elasticity moduli
tensor:

E∼
? = hu(φ) ε∼

?
1 + (1− hu(φ)) ε∼

?
2 , C∼∼

= hu(φ) C∼∼ 1 + (1− hu(φ)) C∼∼ 2

Hooke’s law relates the strain tensor to the stress tensor by the following expression:

Σ∼ = C∼∼
: (E∼ −E∼

?)

= (hu(φ) C∼∼ 1(c) + (1− hu(φ)) C∼∼ 2(c)) : (E∼ − hu(φ) ε∼
?
1 − (1− hu(φ)) ε∼

?
2) (1)

Contrary to the previous Voigt homogenization scheme, the elastic energy of the effective ho-
mogeneous material is no longer the average of energy densities of both phases. It is indeed not
possible to distinguish an explicit form for the elastic energy densities in each phase. The elastic
energy is then postulated as:

fe(φ, c, ε∼) = (E∼ − hu(φ) ε∼
?
1(c)− (1− hu(φ)) ε∼

?
2(c)) : C∼∼

: (E∼ − hu(φ) ε∼
?
1(c)− (1− hu(φ)) ε∼

?
2(c))
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<LOCALIZATION1>

<LOCALIZATION1>

The localisation object is used to evaluate the strain and stress concentration tensors (Ar,Br) as
well as the transformation influence tensors (Dsr,F sr). Several localization rules are available, such
as Voigt, Reuss, Mori_Tanaka etc ...

Syntax:
The syntax depends on the type of localization:

**localization name
[*consistency <value>]

...

*consistency give the precision, for the TFA consistency checks. In fact, some relations on the TFA
method could be checked using the given ratio, which is especially useful for the **localization
numeric which allows the user to give his own tensors. It is also useful for debugging. The
relations that will be verified are∑

r

Dsr − I +As = 0

∑
r

DsrL
−1
r = 0

∑
r

crDrs = 0

csLsDsr − crDT
rsLr = 0

Theses relations are verified for each sub-volume s and the checks are passed when the residual
(absolute or relative) is smaller than a preset threshold, which is set in the input-file. The default
value of consistency depends on the localization type.

mori tanaka This method is used only for 2 sub-volumes, where the matrix is supposed to be the
sub-volume 1 and the direction of fibers is 3. The matrix is isotropic.

**localization mori_tanaka

*geometry cylinder <double> <double> | **geometry sphere <double>

[*consistency <double>]

[*correction stiffness <double>]

*geometry geom is sphere or cylinder. r1 and r2 define the geometry of cylinder and sphere.

*consistency some relations between localisation and influence tensors could be checked using
the given ratio.

*correction a correction for the asymptotic tangent stiffness is done using corrected values for
the eigenstrains, instead of using the current tangent stiffness, that needs the evaluation
of the instantaneous strain and stress concentration tensors [chab01].

The elastic concentration and influence tensors are evaluated using the Mori-Tanaka
method, by the following relations:

As = T s

(
r∑
s=1

crT r

)−1

where T r =
[
I + SL−1

1 (Lr −L1)
]−1

Drr = (I −Ar) (Lr −Ls)−1
Lr and Drs = (I −Ar) (Ls −Lr)−1

Ls
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<LOCALIZATION1>

In the matrix, T 1 = I and S is the effective Eshelby tensor. The localisation tensor is
obtained as follows

L =
∑
r

crLrAr

voigt This scheme assumes a uniform total strain field among each sub-volume as well as the
macroscopic effective material.

**localization voigt

[*consistency <double>]

Under the dual assumption of εr = E, the localisation and influence tensors, using the
voigt method, are:

As = I, Drs = 0, F sr = δrsI − crLsL−1 ∀r, s

and L =
∑
r

crLrAr =
∑
r

crLr

reuss The Reuss scheme assumes homogeneity of stress among each sub-volume and the macroscopic
effective medium.

**localization reuss

[*consistency <double>]

The localisation and influence tensors, using the Reuss assumption σr = Σ, are:

As = L−1
s L, F sr = 0, Dsr = I − crAs = I − crL−1

s L ∀r, s

Bs = I and L−1 =
∑
r

crL
−1
r

numeric The localisation and influence tensors As and Drs can be directly read from a file, which
are given explicitly by the user.

**localization numeric

*number_of_subvolumes <integer>

*A <tensor list> | *localization_tensors_ar_file <file>

*D <tensor list> | *localization_tensors_drs_file <file>

[*consistency <double>]

The default value of consistency is 1.e−2. The tensors A and D are given in a 6x6 repre-
sentation, with 6 doubles per line and no empty lines between the tensors. The number
of sub-volumes should be specified before reading any tensor. Both tensors Ar and Drs

should be given in the following form:

D(0, 0) D(0, 1) ... D(0, n− 1)
D(1, 0) D(1, 1) ... D(1, n− 1)

...
...

...
...

D(n− 1, 0) D(n− 1, 1) ... D(n− 1, n− 1)

where n denotes the number of sub-volumes.
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<LOCALIZATION1>

polycrystal This is particularly useful for the approximation of the macroscopic behaviour of the
polycrystal for which each grain has a different elastic stiffness or stiffness orientation tensor

**localization polycrystal

C <double>

The elastic concentration and influence tensors are :

Dsr = (δsr − cr)(I − CL−1) and Esr = I +Dsr − crAs

L−1 =
∑
r

crL
−1
r and As = L−1

s L

tfa selfconsistent sphere The selfconsistent TFA localization is used for N spherical inclusions
and anisotropic elasticity. Each sphere can have its own rotation and elasticity.

**localization tfa_selfconsistent_sphere

[*consistency <double>]

[*p_integration <integer>]

[*lhom_max_iterations <integer>]

*p integration The number of points for the numerical integration on the surface of the unit
sphere, the default value is 25.

*max Maximum number of iterations to find the homogeneised medium, where the default
value is 10.

*consistency The default value is 1.0e−10.

Using the selfconsistent method, the elastic concentration and influence tensors are given by the
following relations:

Dsr = (I −As)(Ls −L)−1(δsrI − crAT
r )Lr, Ar = (L∗ +Ls)

−1(L∗ +L)

F sr = (I −Bs)(L
−1
s −L

−1)−1(δsrI − crBT
r )L−1

s , L =

(∑
r

cr(L
∗ +Ls)

−1

)
−L∗

where L∗ = P −
∑
r crLs is the Hill’s constaint tensor and P is the Hill polarization tensor

[Hers54, Suvo02, kron58] .

The steps to evaluate the localization tensor L are:

• First estimate : L0 =
∑
r crLs

• Estimate L(P )

• Calculate (max|Ln− Ln+ 1| < consistency)

• Main loop until the |Pn− Pn+ 1| < consistency or until nmax is reached.

multilayer Multilayer localization only valid for 3D problems and tensor size 6. The geometry of
the layer is given by : (1, 2) plane of the layers and 3 direction perpendicular to the layers.

**localization mutlilayer

[*consistency <double>]
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Numerical calculations of localisation and influence tensor:
It is possible to calculate the influence and localisation tensors using a numerical method. Numerical
approximation of localization and eigenstrain influence tensors in the literature are given by Dvorak and
Teply[dvor93] as well as Paley and Aboudi [Pale92]. The theoretical developments are not presented
here.
Usage : Zrun -micmac name.inp.
These tensors can be read in Multimat using **localization numeric

Syntax:

****micmac

***no_sqrt2

***local local

***compute_A

***compute_B

***grad options
***compute_D

***check_consistency

***no sqrt2 do keep the sqrt2 in the non diagonal terms. Please use this option.

***local specify the name of the localisation problem (see FE2) method

***compute A to compute the strain localisation tensor.

***compute B to compute the stress localisation tensor.

***grad specify the strain apply to the local problem to calculate (see example).

***compute D to compute the strain influence tensors.

***check consistency to verify the relations between A and D.

Example:
A 2D generalized plane strain example.

****micmac

***no_sqrt2

***local local

***compute_A

***compute_B

***grad 4 1. 0. 0. 0.

***grad 4 0. 1. 0. 0.

***grad 4 0. 0. 1. 0.

***grad 4 0. 0. 0. 1.

% if 3D problem, use :

% ***grad 6 1. 0. 0. 0. 0. 0.

% ***grad 6 0. 1. 0. 0. 0. 0.

% ***grad 6 0. 0. 1. 0. 0. 0.

% ***grad 6 0. 0. 0. 1. 0. 0.

% ***grad 6 0. 0. 0. 0. 1. 0.

% ***grad 6 0. 0. 0. 0. 0. 1.

***compute_D

***check_consistency

****return
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<LOCALIZATION2>

This localisation object evaluates the overall elastic stiffness L.

Syntax:
The syntax depends on the localization rule.

**localization name
...

voigt Using the Voigt scheme, the elastic stiffness is L = 2µI

**localization voigt

mu <double>

matrix The elastic stiffness is the Fourth-order compliance tensor L = S

**localization matrix

young double

poisson doule

kroner The overall elastic stiffness is L = α(Lr(I − S)) where S is the effective Eshelby tensor and
Lr is the elasticity matrix of the sub-volume r.

**localization kroner

alpha double

poisson doule

ratio doule

tangente The elastic stiffness is L = AI:

where A =
2µµp(7− 5νp)

µp(7− 5νp) + 2µ(4− 5νp)

and f =

√
Ė∼
p : Ė∼

p√
σ̇∼ : σ̇∼

, µp =
µ

1 + 2µf
and νp =

ν + 2µ(1 + ν)f/3

1 + 4µ(1 + ν)f/3

**localization tangente

mu double

poisson doule
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