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2 / 913D fracture mechanics simulation with Z-cracks
• insertion of an arbitrary number of cracks in an

unstructured FE mesh
• static crack SIF computation
• crack propagation simulation :

? cyclic loading
? automatic remeshing
? propagation laws
? bifurcation criteria (out-of-plane propagation)
? material non-linearity and transfer of plasticity initial state during cycles

Z-cracks



3 / 91Z-cracks - operating principle
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4 / 91Z-cracks - Graphical User Interface

• interactive setup of 3D fracture mechanics simulations
• automatic generation of input files for different steps
• default settings for main parameters
• interactive post-processing/visualization
• storage of the current state of the simulation setup in a

history file
Z-cracks



5 / 91Step 1

Import of a FE cyclic input file
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6 / 91Input for step 1 (import)

• input deck to do 1 cycle on the uncracked
(sane) geometry
• must include preloading steps if any
• in the linear-elastic case the unloading steps

are not necessary
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7 / 91Import GUI controls

• 1. give the name of the FE input file

1
b

• button (b) can be used to browse for the input file

Z-cracks



8 / 91Import GUI controls

• 2. select an FE code (Abaqus, Ansys, Zebulon,
Samcef)
• 3. click Import

2
3

Z-cracks



9 / 91Import results
Import results:
• a template file input.dtpl
• a Zebulon mesh input.geo
• click on Zmaster (4) to view the imported mesh

4
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10 / 91Import template file
• ASCII file (may be modified by the user)
• created from the original FE file in order to:

? remove mesh objects (nodes, elements, group definitions)
? preserve bcs, loads and step definitions
? if needed, change bc/loads syntax for commands using

named objects (nsets, bsets, surfaces preserved after
remeshing)

• used to generate a new FE input file when the mesh
is changed (crack insertion/propagation)

EXPORT
MECHANISM

Template file
sane.dtpl

New mesh file
new.geo

New FE input file
new.inp
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11 / 91Step 2

Crack definition/meshing
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12 / 91Input for step 2 (crack meshing)

Can be defined either by:
• the geometric definition of simple crack shapes

(circles, ellipse)
? coordinates of the circle (ellipse) center
? vector normal to the crack plane
? crack size (circle radius)
? for an ellipse definition of an additional minor axis direction

and radius

• or a mesh (Zebulon format) of the crack surface (2D
or 3D shell elements)

Z-cracks



13 / 91Crack mesh GUI controls

• 1. Size of elements at the crack tip

1

size in the same unit as the one used for the mesh

Z-cracks



14 / 91Crack mesh GUI controls
• 2. Crack (circle) center
• 3. Vector normal to the crack plane
• 4. Size (circle radius)
• 5. Click Run to mesh the crack

2 3 4

5

vectors (center, normal) are specified as 3 float values
separated by a blank space a "." is mandatory in the definition
of float values

Z-cracks



15 / 91Multiple cracks definition
• to define an additional crack, just change the crack id in (6), and

define the geometric parameters in (2),(3),(4) as in the previous
case

• clicking on (7) loads the geometric definitions associated to the
crack id specified in (6), thus allowing to change the values if
needed

• (5) remesh only the crack specified in (6), while (8) mesh all
cracks at once

76

2 3 4

5 8
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16 / 91Crack mesh results
• a mesh (Zebulon format) of the crack(s) surface(s)

crack.geo
• click Medit (6) or Zmaster (7) to view the crack mesh

6 7

size of triangular elements near the crack front should
correspond to the one defined in the General Tab (1)

Z-cracks



17 / 91Step 3

Crack insertion in the sane mesh
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18 / 91Generalities: Distene remeshing tools
• For remeshing Z-cracks makes an heavy use of various

software modules of MeshGems Suite distributed by the
DISTENE company:

? MeshGems-SurfOpt: surface remeshing tool

? MeshGems-Tetra: 3D tetrahedral mesh generator taking as
input a surface mesh representing the boundary of the object

? MeshGems-Adapt: adaptive surface and/or volume remeshing
tool, that can handle both a boundary surface mesh and a 3D
initial tet mesh at the same time

• those remeshing tools work directly from an input mesh (i.e. no
CAO definition is needed), thus offering a great flexibility and an
easy interface with arbitrary FE software

• they are automatically driven by Z-cracks when performing
crack insertion/crack advance remeshing operations

• specific license keys are needed that should be obtained directly
from the Z-set distributor

Z-cracks



19 / 91Generalities: algorithm

Crack insertion is an automatic 2-phase process that may be
roughly summarized as:

• Phase 1: cutting of the original geometry by the crack
mesh produced during step 2
the result is an intermediate mesh with the discontinuity
(crack surfaces) explicitly introduced in the geometry.
• Phase 2: remeshing of the previous to obtain a good

quality mesh (respecting the size required near the crack
front) needed to compute accurate values of SIF at the
crack tip

Z-cracks



20 / 91Generalities: remeshing controls
Phase 2 remeshing is mainly controlled by 3 parameters:
• the Min size value (1) of elements at the crack tip
• the Max size (2) of elements generated during remeshing
• the Gradation factor (3) or element size rate of increase

when distance to the crack front is growing

1 2 3

the remesher only handles tet elements, such that quads in the
initial geometry will be automatically converted to tets

Z-cracks



21 / 91Generalities: remeshing the whole structure

• leave unchecked the Must extract elset check-box (4)

4

• the output mesh contains only volume tet elements
• node and element positions/ids are not preserved
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22 / 91Generalities: remeshing a region around the crack tip
• select Must extract elset (4)
• set NEW as the name of the elset containing the remeshed

region in the Cracked elset text-field
• give size of the region using the Elset radius (6) text-field

4
5 6

• node and element positions/ids outside the remeshed
region are preserved (including non volume elements)

Z-cracks



23 / 91Generalities: remeshing a subset
• select Must extract elset (4)
• set the name of an elset containing elements of the subset

in the Cracked elset text-field
• set 0.0 in the Elset radius (6) text-field to imply that the

whole subset is remeshed

4
5 6

• mandatory for contact between to avoid fusion of
contacting nodes: set Cracked elset as one of the 2
contacting components (i.e. the one with the crack)

Z-cracks



24 / 91Generalities: remeshing a region inside a subset
• select Must extract elset (4)
• set the name of an elset containing elements of the subset

in the Cracked elset text-field (5)
• set the size of a region around the crack tip using the Elset

radius (6) text-field

4
5 6

• an elset named NEW will be created with the size specified
inside the PART1 elset

Z-cracks



25 / 91Generalities: sets/components preservation

1 2 3
4 5

• Elsets (1) : elsets (in the remeshed subset) used to affect
material properties should be declared here

• Fasets (2) : fasets are surface elements in the Z7 mesh. Fasets
are automatically created during import from surface loads/bcs
and contact definitions found in the input file. Those are
automatically preserved and there is no need to specify their
names using (2). However additional surface definitions may be
added here for preservation

• Nsets (5) : nsets are list of nodes used to apply boundary
conditions. Those are automatically created in the output Z-set
mesh obtained during import. Preservation is not automatic and
pertinent nset names should be explicitly defined here to allow
valid bcs definition after export

Z-cracks



26 / 91Generalities: guidelines and pitfalls
• prefer named components to apply loads and bcs, instead of

node ids

• define an elset containing only supported (volume) elements
and boundary conditions and remesh only a subset of the latter

• non-uniform surface loads are not supported

• nodal bcs and nset preservation in the remeshed part:

? should be used only for point load/bcs, because preservation of
geometric positions of large collection of nodes result in too
much constraints on remeshing and poor quality end result mesh

? ids are not preserved

? only surface nodes can be preserved

? Z-cracks attempts to transform nsets to surfaces automatically .
Those are automatically preserved (without constraint on the
remeshing), and translated back to nsets during export of new
FE command files. This works fine for uniform bcs, but cannot
be used in a submodeling procedure.
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27 / 91Crack insertion GUI controls
• 1. give the size of elements at the crack tip (General

tab, same definition as for step 2)
• 2. click Insert to run crack insertion

2 3 4

• view the output cracked mesh using Medit (3) or
Zmaster (4)

Z-cracks



28 / 91Crack-related components in the geo file

• insertion output is a Z7 meshfile (geo file with name
cracked.geo) that can be loaded in Zmaster for display
• besides mesh objects translated from the FE input file,

various crack-related components are added that may be
worth looking through to control the output:

? nsets (group of nodes)
FRONT : nodes on crack front
lip : nodes on crack lips

? bsets (surface or line elements)
FRONT0, FRONT1 ... : individual crack front lines
SIDE0, SIDE1 : surface elements on both sides lips

? elsets (group of elements)
SIDE0, SIDE1 : elements connected to lip nodes on both
sides

Z-cracks



29 / 91Crack front

x

y

z

NSET BOX

BSET BOX

ELSET BOX

Display of the crack front line set using Zmaster

Z-cracks



30 / 91Lip elsets

x

y

z

NSET BOX

BSET BOX

ELSET BOX

Display of lip side elsets using Zmaster

Z-cracks



31 / 91Lip elements elset selection
Selection of elset SIDE0
by Menu/View Options

Plot only those elements
with the Mesh command

NSET BOX

BSET BOX

ELSET BOX

Z-cracks



32 / 91Step 4

SIF calculation
• automatic generation of FE input file to do 1 cycle on

the cracked mesh
• cycle computation
• post-processing of FE results to get SIF values:
? energy release rate G (thermo-elasticity, plasticity)
? stress intensity factors KI, KII, KIII (thermo-elasticity)
? bifurcation angle α

Z-cracks



33 / 91Generalities: SIF calculation by the G-theta method

• integral over the whole domain of the potential energy
derivative wrt a crack virtual extension field θ
• no integration box definitions as in other methods

(Domain Integrals, Crack Tip Contour Integrals)
• can be used with tets unstructured meshes obtained after

remeshing (Step 3)
• see theory for some details on the method and validation

for results obtained on classical (semi-)analytical problems

Z-cracks



34 / 91Crack front discretization
The front is discretized by spline elements built on np control points
(see theory) and SIF value (G, KI ...) are evaluated at those points

2

1

Several options may be used to define those control points:

• specify the exact number of points np on the front:
set a positive np value in (1)

• one point each nno nodes on the front:
set a negative (−nno) value in (1)

• one point at each node, but smooth the output by the LOESS
method using subsets of size ns:
select (2), and give a positive ns value in (1)

Z-cracks



35 / 91Crack front discretization: influence on the results
KI evolutions on the crack-front in the case of an elliptic embedded
crack (see Raju-Newman validation).
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Raju-Newman embedded crack: h=20, b=20, t=4, a=0.8, c=2

1: Front nodes=-1
2: Smoothed, front nodes=20

3: Front nodes=-8
4: Front nodes=12

• oscillations when KI is computed at each node (218 points) of
the FE mesh (curve 1)

• result of the smoothing algorithm (curve 2)

• one point every 8 FE nodes (curve 3, 218/8 = 27 control points)

• distribution of 12 points equally spaced (curve 4)
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36 / 91Choice of a particular SIF output quantity
Choice of the SIF output (G or KI,II,II) has an influence on the
propagation law and the bifurcation angle (Outplane propagation).

43

• default (i.e. when (3) and (4) are left unchecked) is to compute
the strain energy release rate G (the only valid measure when
material non-linearities are included).

• when (3) is selected the propagation law should be given in
terms of KI (MPa.sqrt(m)) instead of G (MPa.m)

• in the latter case, when (4) is unchecked, KI is computed directly
from G using the classical plane-strain equation KI =

√
EG

1−ν2

(use with caution at points close to the free surface)

• when both (3) and (4) are selected the G-theta method is used
to compute directly the KI,II,II values (see theory)

Z-cracks



37 / 91Out-of-plane propagation and bifurcation angle α (1/2)

4
5

• when (5) is checked-out a bifurcation angle is evaluated at each
point of the crack front, using the fracture mechanics quantities
computed by the G-theta method. The criterion used then
depends of the choice made in (4):

• if (4) is left unchecked a default Gmax criterion is used to
calculate α. A GII value is then computed in a direction normal to
the crack plane, allowing to define the angle as α = atan (GII/G)

• when (4) is selected, KII given by the Interaction integral
method is used to compute a bifurcation angle maximizing the
σθθ principal stress according to the following equation:

α = 2 atan

KI/KII +
√

(KI/KII )
2 + 8

4

 sign(KII )
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38 / 91Out-of-plane propagation and bifurcation angle α (2/2)

Crack propagation direction α as a function of the KII/KI ratio
according to the σθθmax model.

Z-cracks



39 / 91SIF extraction GUI controls
• fill-out various G-theta parameters/options (see SIF generalities)

• generate a computation script by clicking on (6). A file named
cracked_SIF.z7p is written with Zprogram command line
interpreter instructions (C/C++ syntax).

• run the script by pressing (8). Note that, once generated, the
script can also be launched from a shell window using
command:

$ Zrun -zp cracked_SIF.z7P

• (7) allows to edit the script from the GUI (see reference)

6 7 8

Z-cracks



40 / 91SIF extraction GUI controls

9 10

11

• select (9) to obtain SIF values in MPa.sqrt(m) when units in the
FE problem are given in (MPa,mm)

• when (10) is selected, contact between the crack lips is
automatically added to the FE input files (useful for negative
loading ratios)

• once calculation of a cycle has been performed, (11) can be
used to run again the SIF extraction post-processing, for
example after having changed the various options
(discretization, G/K selection, bifurcation angle criterion).

Z-cracks



41 / 91SIF results visualization
• results of 1 cycle applied to the cracked mesh are named

cracked_SIF.*

• can be loaded in the native viewers (Abaqus CAE or Ansys
post) or directly in Zmaster using (12)

• SIF post-processing generates ASCII files (see reference) that
can be displayed by various plot commands (14) to (18)

12 13
1614

17 18
15

Z-cracks



42 / 91Display of cracked results file

2.8e+03 6.6e+04
8.1e+03 1.3e+04 1.9e+04 2.4e+04 2.9e+04 3.5e+04 4e+04 4.5e+04 5e+04 5.6e+04 6.1e+04

sigmises map:1.00000    time:1            min:2767.08 max:66315.9

NODE OUTPUT

ELEMENT OUTPUT

Isocontours with Zmaster
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43 / 91SIF plots
Plot front (18) Plot G (14)
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44 / 91Step 5

Fatigue crack propagation

Z-cracks



45 / 91Crack propagation loop
for i = 1 to nc computed cycles

Propag law
script

i = i+1

ZPOST
• SIF extraction
• bifurcation
• propagation

adv file
front nodes

advance

template
dtpl file

Z7
remeshing
to update

crack position

geo file

Z7 new
meshfile

Z7
export inp

on new
cracked mesh

inp file
FE input

cyclei+1

ABAQUS
ANSYS

ZEBULON
fe computation

of cyclei

ZMAT
init of SDV

from cyclei−1

integ file

SDV on
new mesh

Z7
transfer SDV
on new mesh

FE results
file cyclei

from crack
insertion

Z-cracks



46 / 91Generalities: required advance

1

2

• to guarantee a significant advance at each computed cycle,
remeshing is controlled by the Max advance parameter given in
(1)

• the propagation law is then inverted to derive the real number of
cycles (Nr ) needed to reach the advance required. In case of a
simple Paris law (2), Nr is then evaluated as:

Nr = Max advance .
[
C (∆K max )m]−1

where ∆K max is the maximum value of the SIF amplitude ∆K
(can be G or KI) calculated over all crack front points

Z-cracks



47 / 91Generalities: propagation laws

2 3

• use the combo box (2) to select a propagation law

• the Set coefs button (3) opens a dialog allowing to enter values
for coefficients corresponding to the model selected:

• models available are described in the Propagation laws section

Z-cracks



48 / 91Management of crack multiple fronts
In addition to multiple cracks definition at Insertion, Z-cracks handles
new crack fronts that are created when crossing obstacles ... and
may eventually disappear afterwards

FRONT0

FRONT0

FRONT1

FRONT0

FRONT1

FRONT0

Z-cracks



49 / 91Transfer of plasticity state from the previous cycle

4
5

6

• material internal variables obtained at the end of a cycle can be
used to initialize the next cycle (see propagation loop)

• this mechanism is implemented in the Z-mat user material
subroutines available for Abaqus and Ansys, such that the use
of Z-mat in the FE calculation is mandatory to allow this
advanced option

• to activate the SDV transfer capability select (4) and give the
name of the Z-mat file in (5) (or use the browse button (6) to
select one)

Z-cracks



50 / 91Definition of a preloading step before cycling

Initial time Cycle Delta T
time

load

4
5

7 8

• a preloading step can be defined by setting Initial time to a
non-zero value in (7)

• corresponding results are then skipped to compute ∆K

• in addition, if the Transfer state option (4) is activated,
preloading increments are automatically removed from the FE
input decks generated at all cycles except the first one

Z-cracks



51 / 91Crack propagation GUI controls
• enter the number of cycles to compute in (9)

• generate a computation script by clicking on (10). A file named
cracked_PROPAG.z7p is written with Zprogram command line
interpreter instructions (C/C++ syntax).

• run the script by pressing (12). Note that, once generated, the
script can be launched from a shell window using command:

$ Zrun -zp cracked_PROPAG.z7P

• (11) allows to edit the script from the GUI (see reference)

9

10 11 12

Z-cracks



52 / 91Propagation results visualization
• propagation FE results files are named cracked_PROPAGi.*

with i the cycle number

• those files can be loaded in native viewers or in Zmaster using
(12). In this case the cycle loaded is given by (9)

• a cracked_PROPAG.zck file is maintained during cycles in order
to draw SIF evolutions with commands (18)-(24) (see reference)

13

9

16 17 18
19 20 21
22 23 24

14 15

Z-cracks



53 / 91Isocontours on cyclic FE results files
cracked_PROPAG1 cracked_PROPAG5

cracked_PROPAG15 cracked_PROPAG23

Zmaster isocontours drawn from the GUI
Z-cracks



54 / 91Propagation plots definition
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14

Number of points
on the front

Front id selection

• caution, changing the number of points (13) between restarts
may confuse plot interpretation
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55 / 91Propagation plots
x axis: real number of cycles Nr (see required advance)

Plot a(N) (18) Plot V(N) (19)
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56 / 91Front advance plots
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choose a plot plane with the Projection normal selection (15)

• plot all fronts during propagation cycles

Z-cracks



57 / 91Export to a Z8 database

1 2 3 4

• the Export Z8 command (3) of the Import/Export Tab allows to
collect separate cyclic results file (cracked_PROPAG1,
cracked_PROPAG2...) in a single Z8 database, an output
format that supports remeshing

• this database can then be loaded in Zmaster (4) to draw
animations of crack propagation results

• (1) generates the (default) input command for Export Z8. To cut
down disk storage, editing the input with (2) allows to add
*frequency options, and select which increments/cycles should
be stored in the database

Z-cracks



58 / 91G-theta method theory (1/2)

crack plane
∂Ω

M(s)

sΩ

e1

e2

e3

crack front Γ0

Γnθ

Transformations F n of domain Ω to Ωn due purely
to crack propagation

F n : M → M + η θ(M)

θ : crack extension virtual field that modifies only
the position of the crack front Γ0
θ ∈ Θ = {µ such that µ.e3 = 0} (tangent to
the crack plane)

The stress energy release rate G(θ) for crack extension θ is given by
the Lagrangian derivative of potential energy W:

G(θ) = −∂W
∂η

For thermo-elasticity the right-hand side reduces to :

∂W
∂η

=

∫

Ω

[
1
2
(
σ :
(
ε− εth

))
∇θ − σ : (∇u∇θ)

]
dΩ

Z-cracks



59 / 91G-theta method theory (2/2)

np control points

Crack front

s

M(s)

The left-hand side is obtained by
integration on the crack front Γ0:

G(θ) =

∫

Γ0

G(s) θ(s) e1(s) ds

Discretization by np control points with shape functions Nj (s):

G(s) =

np∑

j=1

Gj Nj (s) , G(θ) =

np∑

j=1

Gj

∫

Γ0

θ(s) Nj (s) ds , ∀θ ∈ Θ

For θi (i = 1,np) virtual fields θi (s).e1(s) = Ni (s) :

G(θi ) =

np∑

j=1

Gj

∫

Γ0

Ni (s) Nj (s)ds i = 1,np

=

∫

Ω

[
1
2
(
σ :
(
ε− εth

))
∇θi − σ :

(
∇u∇θi)

]
dΩ

a system with np unknowns Gj (j = 1,np)
Z-cracks



60 / 91SIF extraction using the G-theta method (1/2)

Introducing the same discretization of a Gv value on the crack front Γ0

as the one defined for G previously:

Gv (s) =

np∑

j=1

Gv
j Nj (s)

it is possible to evaluate an interaction integral using any virtual
displacement field v in combination of the FEA obtained
displacement u in the following formulation:

np∑

j=1

Gv
j

∫

Γ0

Ni (s) Nj (s)ds =

∫

Ω

[
1
2

(σ(u) : (ε(v)))∇θi − σ(v) :
(
∇U.∇θi)

]
dΩ
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61 / 91SIF extraction using the G-theta method (2/2)

Introducing, in the previous equation, any pure mode I, II or III
Westergaard displacement solutions v I,II,III , defined in the crack front
vicinity, allows to compute associated Gv ,I,II,III values. The following
Irwin formula for a given isotropic linear elastic behavior, leads to
each associated SIF K I,II,III

j along the front discretization:

np∑

j=1

Gv ,I,II,III
j

∫

Γ0

Ni (s) Nj (s)ds =

np∑

j=1

1− ν2

E

(
K I

j K v ,I
j + K II

j K v ,II
j

)
+

1
2µ

K III
j K v ,III

j

∫

Γ0

Ni (s) Nj (s)ds

Z-cracks



62 / 91G-theta formulation in plasticity

A domain invariant integral can be computed in case of
elastic-plastic material behavior. Such an approach evaluates
the potential energy that would be released during an
infinitesimal advance of the crack front considering a pure
elastic evolution of the material submitted to a fixed inelastic
residual stress field (generated by thermo-visco-plasticity).
The integrated quantity Gp is defined by the following equation:

Gp(θi) =

∫

Ω

[
1
2

(σ : (ε−εae))∇θi − σ :
(
∇u∇θi

)
− σ : ∇εae.θi

]
dΩ

with: εae = ε − εe = εth + εp
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63 / 91Validation: Comparison with the Raju-Newman
solution

2 h

t

b

ca

S1S2

T • embedded crack: symmetry on the
S1, S2 faces

• surface crack: symmetry on the S2
face

• corner crack: no symmetry bcs

Comparison with Z-cracks (np points on
the crack front)

• max difference:

emax = max
i=1,np

{
|KIj−K raju

Ij |
K raju

Ij

}

• average: ē = emax
np
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64 / 91Embedded elliptical crack

h = 20 , b = 20 , t = 4 , c = 2 , a = 0.8

quadratic mesh linear mesh
Min s Grad Qn #dof emax % ē % Min s Grad #dof emax % ē %
5e-3 1.8 yes 480216 1.04 0.52 1e-2 1.8 32883 8.18 4.91
1e-2 1.8 yes 245355 3.18 0.67 1e-2 1.2 152907 4.46 2.40
2e-2 1.8 yes 125187 3.43 0.89 5e-3 1.2 313950 2.89 2.21
4e-2 1.8 yes 63921 4.00 1.64 2e-3 1.2 737631 2.67 2.31
1e-2 2.5 yes 166989 3.08 0.91
1e-2 1.2 yes 1196433 ??? ???
1e-2 1.8 no 245355 2.97 0.67

• quadratic eles with large gradation value (≈ 2) offers the best
cost/accuracy

• small gradation values (< 1.5) needed for linear meshes

• quarter node option significantly improves accuracy for quadratic
meshes (caution: use only with linear elastic material)

• difference with Raju-Newman solution: 1% with quadratic and
3% with linear eles

Z-cracks



65 / 91Embedded elliptical crack
results with a quadratic mesh:
• min_size=0.01 , gradation=1.8
• emax=1.22% , ē=0.54%
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66 / 91Surface elliptical crack

h = 20 , b = 20 , t = 4 , c = 2 , a = 0.8

quadratic mesh linear mesh
Min s Grad Qn #dof emax % ē % Min s Grad #dof emax % ē %
5e-3 1.8 yes 480216 3.05 2.05 1e-2 1.8 32883 10.06 7.76
1e-2 1.8 yes 245355 3.40 2.19 1e-2 1.2 152907 5.89 4.37
2e-2 1.8 yes 125187 5.48 2.42 5e-3 1.2 313950 5.32 4.14
4e-2 1.8 yes 63921 6.29 3.10 2e-3 1.2 737631 5.31 4.26
1e-2 2.5 yes 166989 3.76 2.43
1e-2 1.2 yes 1196433 ??? ???

• same kind of results as in the embedded case

• difference with Raju-Newman solution: 2% with quadratic and
4% with linear eles
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67 / 91Surface elliptical crack
results with a quadratic mesh:
• min_size=0.01 , gradation=1.8
• emax=2% , ē=1.19%
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68 / 91Corner quarter-elliptical crack

h = 20 , b = 20 , t = 4 , c = 2 , a = 0.8

quadratic mesh linear mesh
Min s Grad Qn #dof emax % ē % Min s Grad #dof emax % ē %
5e-3 1.8 yes 480216 6.53 1.53 1e-2 1.8 32883 9.98 5.49
1e-2 1.8 yes 245355 5.01 1.40 1e-2 1.2 152907 7.17 2.01
2e-2 1.8 yes 125187 3.76 1.26 5e-3 1.2 313950 8.67 1.89
4e-2 1.8 yes 63921 3.43 1.17 2e-3 1.2 737631 13.34 2.31
1e-2 2.5 yes 166989 4.67 1.24
1e-2 1.2 yes 1196433 ??? ???

• same kind of results as in the previous case, except at the free
surface where the Z-cracks solution deviates from the
Raju-Newman one

• ???
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69 / 91Corner quarter-elliptical crack
results with a quadratic mesh:
• min_size=0.01 , gradation=1.8
• emax=6% , ē=1.07%
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70 / 91Propagation laws

A wide variety of propagation models are available in Z-cracks,
including:

• standard LEFM models (Paris, Elber, Forman, Walker)
• CRACKOXFLU advanced model (Kruch, Chaboche)
• an API allowing the user to define its own model in a

Zprogram script

Z-cracks



71 / 91Standard LEFM propagation laws
• notations

Kmax , Kmin : min, max values of stress intensity factor K on the
cycle
∆K = Kmax − Kmin
R = Kmin/Kmax (loading factor)
〈f 〉 = f if f > 0 else 〈f 〉 = 0 (positive part)

• model definition and required coefficients

model equation coefficients

paris da = C (∆K )m dN C, m

elber da = C 〈Kmax − Kop〉m dN C, m, A, B

Kop = 〈Kmax − (A + BR) ∆K 〉

forman da = C 〈Kmax−Kth〉m
(1−R)〈Kc−Kmax 〉 dN C, m, Kth, Kc

walker da = C
(
〈∆K−Kth〉

(1−R)(1−λ)

)m
dN C, m, Kth, λ

Z-cracks



72 / 91CRACKOXFLU propagation law (Kruch, Chaboche)

Phenomenological model for crack propagation under complex
cyclic conditions including:
• fatigue with closure effect due to plasticity
• creep damage under tensile open crack condition
• environment-driven embrittlement effects increasing the

fatigue propagation rate
• interaction of overloads with both the fatigue and creep

crack growth
• influence of anisothermal loadings on crack growth rate

Z-cracks



73 / 91CRACKOXFLU: basic ingredients

tc

Kmax

Kmin

tc

Kmax

Kmin

K f

tc

Kmax

Kmin

Kc Kth

K f = Kth

da
dN =

da f
dN + dac

dN

fatigue creep

• loading ratio R = Kmin
Kmax

• toughness KIc

• fatigue threshold K f

• Forman fatigue law :
da f

dN =
C f 〈Kmax−K f〉η f

(1−R)〈KIc−Kmax〉

• creep threshold Kc

• creep damage integration on the cycle :
dac
dN =

Z tc

0
Cc(T (t)) 〈K(t)−Kc〉ηc(T (t))

• threshold relaxation :

dKth = −A
(

Kth
K

)ω
K dt

Kc = Φ().g(R).Kmax

2 cracking mechanisms with
threshold evolutions

• Φ() function accounts for overloads
during the cycle

• g(R) accounts for cycle loading ratio R

Z-cracks



74 / 91CRACKOXFLU: influence of overloads

time

K overload

to t f

to t f time

da
dN

• crack growth rate increase during an overload

• rate decrease following the overload

• progressive vanishing of this effect until crack
growth rate recovers its initial value

• definition of an effective KMeq = Φ Kmax used in the threshold calculation

• Φ depends on an estimation of current crack tip plasticity to account for
overloads: Φ ≥ 1, Φ = 1 wo overload

size of plasticity at the crack tip: ρ = 1
2π

(
KMeq
σy

)2
(1)

if
(
KMeq(i) ≥ KMeq(i − 1)

)
increase of ρ using (1) , Φ = 1

else
plasticity doesn’t evolve but ρ is decreased by fatigue advance
ρ(i) = 〈 ρ(i − 1)− daf 〉
(1) inverted to get KMeq : KMeq(i) = σy

√
2πρ(i) , Φ =

KMeq (i)
Kmax (i) > 1

("i" index of current cycle in the applied loading)
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75 / 91CRACKOXFLU: influence of environment
crack tip embrittlement by oxidation increasing the fatigue

propagation rate
• integration of an oxide penetration length lp during the cycle

lp =

∫ tc

0

1
4
α(T (t)) t−

3
4 dt

α(T ) material coefficient depending on temperature

• decrease of lp by an amount corresponding to crack advance

lp = 〈 lp − daf − dac 〉

• local toughness Kc dependence on lp

Kc(lp) = Kco

(
1− u − u exp

(
czm
lp

))
, lp > 0

Kco toughness of a completely embrittled material, u, czm material coefficients

• use of Kc(lp) in the fatigue law

daf

dN
=

Cf 〈Kmax − Kf 〉ηf

(1− R) 〈Kc(lp)− Kmax 〉
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76 / 91CRACKOXFLU: anisothermal effects
K (t) , t = 0, tc : K values during cycle of period tc
T (t) , t = 0, tc : temperature values

• normalization of K by Kn(T )

S(t) =
K (t)

Kn(T (t))
, t = 0, tc

toughness KIc may be a good choice for Kn

• fatigue law written using S instead of K

daf

dN
=

Cf 〈Smax − Sf 〉ηf

(1− R) 〈1− Smax 〉

with constant values for coefficients (Cf , ηf ) calibrated on a master curve(
da
dN = f (∆S)

)
obtained from crack propagation tests at various temperatures

• creep law with coefficients depending on temperature

dac

dN
=

∫ tc

0
Cc(T (t)) 〈K (t)− Kc〉ηc (T (t))
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77 / 91CRACKOXFLU results: influence of holding time
(creep)
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78 / 91CRACKOXFLU results: influence of overloads

1 cycle : repetition of a sequence with or wo overloading
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79 / 91User propagation laws

A simple API is available in Z-cracks to bypass built-in models
and allow the user to implement its own propagation law in a
Zprogram script (interpreted script language).

Z-cracks



80 / 91User models GUI controls

1 3 2

• select z7p for a propagation model defined in a user script using combo box (1)
• use the Advanced propag command to open a graphics dialog allowing to

define the name of the script file (5)

4
5

6 7 8

• (7) allows to edit the script file selected
• with (8) a sample user script is fetched from the Z-set database. This script

implements a basic Paris law that can be used as a basis to write new models
• (4) allows to define the name of a file with model coefficients expected in the

script, while (7) edits the material file selected

Z-cracks



81 / 91Definitions

crack plane
∂Ω

P(s)

sΩ

n

t
b

crack front Γ0

Γnθ

for each point P(s) along crack front Γ0, and with the definition of
a local frame (n, t , b) as represented on the figure:

• n normal to crack front at point P(s) in the crack plane

• t tangent to crack front at point P(s) in the crack plane

• b normal to the crack plane at point P(s)

and for the following definition of bifurcation angle α in plane (n, b), the user script
should define:

α
n

b
t crack plane

(n,t)

plane normal to crack
plane at point P

(n,b)

P

da

dx

dy

• crack advance da in direction α

• projections (dx , dy ) of da on local
vectors (n, b):

dx = cos(α).da
dy = sin(α).da

Z-cracks



82 / 91Propagation script API
the following 2 functions are expected in the propagation script:

Declaration of coefficients

void declare_coefs()
{ coef_names.resize(5);

coef_names[0]="some_coef";
coef_names[1]="K";
...
coef_names[4]="another_coef";

}

Crack advance calculation

double compute_propag(VECTOR& Gtimes, VECTOR& G,
VECTOR& A, VECTOR& T, double& dx, double& dy)

{ double da;
da = K()*...;
dx = ...;
dy = ...;
return(da);

}

• coef_names is an array of strings. This array should be resized/filled with the
corresponding names of coefficients to be read in the propagation material file.
Coefs can then be referenced by their name in function compute_propag()
using the () operator as shown above

• inputs of function compute_propag() are vectors whose size correspond to
the number of increments stored in the FE results file for the current cycle:

? Gtimes, T: time and temperature values
? G: SIF values (G or KI depending on the option selected) computed by the

G-theta method for the current front point
? A: bifurcation angles computed by the G-theta post-processor

• outputs are the da, dx , dy scalar values of the crack advance defined in the
previous slide

Z-cracks



83 / 91Propagation script example
An implementation of a simple Paris law using the user API is given hereafter for
reference:

void declare_coefs()
{ coef_names.resize(2);

coef_names[0]="C";
coef_names[1]="m";

}

double compute_propag(VECTOR& Gtimes, VECTOR& G, VECTOR& A, VECTOR& T, double& dx, double& dy)
{ int i;

double Gmin, Gmax, Amax, Tmax, da;
// Get min max
Gmax = 0.0; Gmin = 1.e50; Amax = 0.0; Tmax = T[0];
for(i=0;i<!Gtimes;i++) {

// Do not take into account initial transferred value
if((!Gtimes>2)&&(Gtimes[i]<=0.0)&&(i==0)) continue;
if(G[i]>Gmax) { Gmax = G[i]; Amax = A[i]; Tmax = T[i]; }
if(G[i]<Gmin) Gmin = G[i];

}
if(Gmin<0.0) Gmin = 0.0;
if(!Gtimes==1) Gmin = 0.0;

for(i=0;i<!coefficients;i++) coefficients[i].compute_value(Tmax);

da = C()*(Gmax-Gmin)^m();
// using the angle corresponding to Gmax to compute (dx,dy)
dx = da*cos(Amax);
dy = da*sin(Amax);
return(da);

}
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84 / 91Zprogram scripts

• chains various operations involved in SIF computation and
Crack Propagation procedures:
generate input FE command to compute a cycle on the
current cracked mesh, transfer fields on the cracked mesh
when needed, calculate SIF and crack advance according
to a given propagation law, remesh the structure according
to the new crack position ...
• uses the command line interpreter built in the Zrun

program (C/C++ syntax)
• can be modified/adapted by the user without compilation

Z-cracks



85 / 91SIF computation script: cracked_SIF.z7p

initializations
from the GUI settings

mapping of thermal fields
on the cracked mesh
(if defined)

write FE input file
to do 1 cycle on the cracked mesh

run FE calculation

SIF calculation
from FE results

i n t main ( )
{ STRING cmd, fe cmd ;

i n i t v a r ( ) ;
sane name = ” cube abaqus ” ;
cracked name = ” cracked ” ;
t h e r m a l f i e l d = ” ” ;
format = ” abaqus templated ” ;
smp = 2;
fe cmd = ” Zmat −fg −mpi 2 ” ;
i f c o n t a c t = 1;

i f ( ! t h e r m a l f i e l d ) {
w r i t e t h e r m a l t r a n f e r i n p ( 0 ) ;
cmd = ” Zrun −f e t r a n s f e r t rans fe r t he rm ” ;
system (cmd ) ;

}
cmd = ” Zrun −m EXPORT” ;
system (cmd ) ;
cmd = fe cmd +” ”+ cracked name +” SIF ” ;
system (cmd ) ;
cmd = ” Zodb −pp −smp ”+ i t o a (smp)+ ” ”+ cracked name +” GPP ” ;
system (cmd ) ;

}

Z-cracks



86 / 91Propagation script: cracked_PROPAG.z7p (1/4)

initializations
from the GUI settings

modify those values to do a restart
eg. setstart=101to calculate cycles 101-200

loop on propagation cycles

mapping of thermal fields on the

new cracked mesh (if defined)

i n t main ( )
{

i n i t v a r ( ) ;

smp = 2;
cracked name = ” cracked ” ;
. . .

s t a r t = 1; / / num of the f i r s t cyc le computed
nb cyc = 100; / / t o t a l number of cyc les to compute

/ / Wr i te advance remeshing f i l e , do not change dur ing propag
wri te remesh new ( 1 ) ;

e r r = 0;
f o r ( cyc= s t a r t ; cyc<( s t a r t +nb cyc ) ; cyc ++) {

cur cyc = cyc ;
cout<<endl<<endl<<”−> S t a r t o f cyc le : ”<<cyc<<” −−”<<endl<<endl ; c f l ush ( ) ;

i f ( cyc ==1) geof name = cracked name + ” . geo ” ;
e lse geof name = cracked name +” PROPAG”+ i t o a ( cyc−1)+”.geo ” ;

i f ( ! t h e r m a l f i e l d ) {
w r i t e t h e r m a l t r a n f e r i n p ( cyc−1);
cmd = ” Zrun −f e t r a n s f e r t r ans f e r t he rm ” ;
e r r = system (cmd ) ;
i f ( e r r ) {

cout<<endl<<”E r ro r when t r a n s f e r r i n g thermal f i e l d to mesh : ”<<geof name<<” end”<<endl<<endl ;
break ;

}
}

. . .
}

}
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87 / 91SIF computation script: cracked_PROPAG.z7p (2/4)

loop on propagation cycles

transfer SDV + re-equilibrium (if needed)

transfer SDV on the new mesh

run FE re-equilibrium increment

export FE input file for next cycle

i n t main ( )
{ . . .

f o r ( cyc= s t a r t ; cyc<( s t a r t +nb cyc ) ; cyc ++) {
. . .
i f ( i f t r a n s f e r t ∗ ( cyc>1) ) {

w r i t e s d v t r a n f e r i n p ( cyc−1);
cmd = ” Zodb −f e t r a n s f e r −s ODB. AutoConvert 1 t r a n s f e r s d v ” ;
e r r = system (cmd ) ;
i f ( e r r ) {

cout<<endl<<”E r ro r when t r a n s f e r r i n g sdv to mesh : ”<<geof name<<” end”<<endl<<endl ;
break ;

}
system ( ” rm −f REEQUILIBRIUM∗ ” ) ;
e r r = export mesh templated ( cyc , 1 ) ;
i f ( e r r ) {

cout<<endl<<”Fa i led to generate the REEQUILIBRIUM ”<<format<<” i npu t f i l e ” ;
break ;

}
cmd = fe cmd + ” −sdv0 REMESHED REEQUILIBRIUM” ;
cout<<” . r e e q u i l i b r i u m at cyc le ”<<cyc<<” using command: ”<<cmd<<endl<<endl ; c f l ush ( ) ;
e r r = system (cmd ) ;
i f ( e r r ) {

cout<<endl<<”An e r r o r occured dur ing r e e q u i l i b r i u m at cyc le : ”<<cyc<<” end”<<endl<<endl ;
break ;

}
}

cout<<endl<<” . generat ion of ”<<format<<” i npu t f i l e f o r cyc le : ”<<cyc<<endl<<endl ; c f l ush ( ) ;
e r r = export mesh templated ( cyc , 0 ) ;
i f ( e r r ) {

cout<<endl<<”Fa i led to generate the ”<<format<<” i npu t f i l e at cyc le : ”<<cyc<<endl<<endl ;
break ;

}
. . .

}
}
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88 / 91SIF computation script: cracked_PROPAG.z7p (3/4)

loop on propagation cycles

run FE calulation of next cycle
(note, restart from re-equilibrium if needed)

calculate SIF from FE results

i n t main ( )
{ . . .

f o r ( cyc= s t a r t ; cyc<( s t a r t +nb cyc ) ; cyc ++) {
. . .
cmd = fe cmd ;
i f ( i f t r a n s f e r t ∗ ( cyc>1) ) cmd = cmd + ” −o j REEQUILIBRIUM ” ;
cmd = cmd + ” ” + cracked name +” PROPAG”+ i t o a ( cyc ) ;
cout<<endl<<” . computat ion of cyc le ”<<cyc<<” using command: ”<<cmd<<endl<<endl ; c f l ush ( ) ;
e r r = system (cmd ) ;
i f ( e r r ) {

cout<<endl<<”An e r r o r occured dur ing FE computat ion of cyc le : ”<<cyc<<” end”<<endl<<endl ;
break ;

}

gpp name = cracked name +” GPP PROPAG”+ i t o a ( cyc ) ;
w r i t e gpp t emp la t ed ( cyc ) ;
cout<<endl<<” . computat ion of SIF at cyc le : ”<<cyc<<endl<<endl ; c f l ush ( ) ;
cmd = ” Zodb −s ODB. AutoConvert 1 −pp −smp ”+ i t o a (smp)+ ” ”+gpp name ;
e r r = system (cmd ) ;
i f ( e r r ) {

cout<<endl<<”An e r r o r occured when computing SIF at cyc le : ”<<cyc<<” end”<<endl<<endl ;
break ;

}
. . .

}
}
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89 / 91SIF computation script: cracked_PROPAG.z7p (4/4)

loop on propagation cycles

calculate advance from propagation law
and write adv file (remeshing input)

remesh to account for new crack position

i n t main ( )
{ . . .

f o r ( cyc= s t a r t ; cyc<( s t a r t +nb cyc ) ; cyc ++) {
. . .
name = gpp name + ” .ZCPOST” ;
cout<<endl<<” . reading SIF in f i l e : ”<<name<<endl ; c f l ush ( ) ;
e r r = read zcpost (name, f ron t s , Gvalues ) ;
i f ( e r r ) {

cout<<endl<<”I n v a l i d GPP r e s u l t s f i l e : ”<<name<<” . . . end”<<endl<<endl ;
break ;

}
i f ( f r o n t s . s ize ( )==0) {

cout<<endl<<”No more crack f r o n t : c a l c u l a t i o n i s f i n i s h e d .”<<endl<<endl ;
break ;

}
compute advance ( f r on t s , Gvalues , max h ) ;
/ / Wr i te corresponding advance f i l e
adv name = cracked name +” PROPAG”+ i t o a ( cyc ) + ” . adv ” ;
wr i te advance ( adv name , f r o n t s ) ;

/ / Copy f i l e s wi th standard names needed by dr ive crack remesh
STD CP( gpp name + ” . geo ” , ”TO REMESH. geo ” ) ;
STD CP( adv name , cracked name +” PROPAG. adv ” ) ;

/ / Perform remeshing
do dr ive remesh ( max qual i t y ) ;

asc f . open ( ”REMESHED. geo ” ) ;
i f ( ! asc f . ok ) {

cout<<endl<<”Remeshing f a i l e d , no REMESHED. geo f i l e . . . end”<<endl<<endl ;
break ;

}
STD CP ( ”REMESHED. geo ” , ( cracked name +” PROPAG”+ i t o a ( cyc ) + ” . geo ” ) ) ;

}
}
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90 / 91SIF output files

• SIF along the crack front(s) are written is ASCII files
FRONT0_SIF, ..., FRONTn-1_SIF (for front number n)
• those files are used by the SIF tab to draw curves with the

gnuplot program
• for each np points in the front discretization / line in the file,

SIF output is stored by column:
# s x y z G T angle KI KIii KIIii KIIIii Gii @ N=0 cycles
0.000000e+00 1.077127e-02 0.000000e+00 5.595189e-01 2.172077e+03 0.000000e+00 ...
...
1.664700e-01 -2.168404e-19 1.660996e-01 5.618385e-01 2.217370e+03 0.000000e+00 ...

1: curvilinear coordinate s of current point on the front
2-4: x , y , z coordinates
5: G value
6: T (temperature) if anisothermal (otherwise 0.0)
7: angle α if Outplane propagation 8: KI (derived from G) when
Compute SIF 9-11: KI ,KII ,KIII if Interaction integral

Z-cracks



91 / 91PROPAG output files
• the propagation script writes a file named cracked_PROPAG.zck

containing the following info (one line for each computed cycle)

• caution, number of detected fronts can change from one cycle to
the othermay be difficult to interpret

# column
for c = 1 to nc computed cycles

nr : cumulative number of real cycles to reach the required advance 1
dnr : increment number of real cycles 2
c : index of current computed cycle 3
t : time at end of current computed cycle 4

t = t0 + c.T , T cycle period , t0 initial time entered in (8), (7) (see PROPAG tab)
np : number of points stored on each front (field (9) of the PROPAG tab) 5
nf : number of fronts detected during the current computed cycle 6

for f = 1 to nf crack fronts
for p = 1 to np stored points on front f

12 values stored for point p starting at column cp = 6 + 12
[
np (f − 1) + p − 1

]
+ 1

(x, y, z) : coordinates of point cp

a : cumulative advance , a =
c∑

i=1
da(i) cp + 3

(ux , uy , uz ): displacement of point p due to advance at cycle c cp + 4

da : crack advance due to cycle c , da =
√

u2
x + u2

y + u2
z cp + 7

Kmin, Kmax : min,max value of SIF during cycle c cp + 8
can be G or KI depending on the SIF option selected

Tmin, Tmax : min,max value of temperature on cycle c (0.0 if no temperature dependency)cp + 10

Z-cracks
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