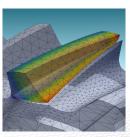

Z-cracks - 3D fracture mechanics simulation

June 2, 2020



3D fracture mechanics simulation with Z-cracks

- insertion of an arbitrary number of cracks in an unstructured FE mesh
- static crack SIF computation
- crack propagation simulation :
 - * cyclic loading
 - * automatic remeshing
 - * propagation laws
 - * bifurcation criteria (out-of-plane propagation)
 - \star material non-linearity and transfer of plasticity initial state during cycles

Z-cracks - operating principle

Z-cracks - Graphical User Interface

				Z-	crack	ts.				
Conform 31	D crack	propagation 1	toolbo	х						
General	Impor	t/Export/Hot	spots	Cracks	Inse	ertion	SIF	Propagation	Advanced	
Geometric	param	eters								
Max adva	nce	0.0300000		Front ini lei	ngth	0.500	0000	#Output	8	
Fatigue cy	cles									
Initial time	e	0.00000		Cycle Delta	аT	2.000	000	#Cycles	50	
Propagatic	on law									
paris_std			~							
	refinem	ent			Set	coefs			nced propag	
Scale I	er state							Projection		
Scale 1	er state			View Front		0				
Scale	er state nat file				\$			Projection 3D		
Scale I Transf	er state nat file Genera	2			\$	0		Projection 3D	normal	
Scale I	er state nat file Genera on	2		View Front	\$ Edit	0		Projection 3D	normal	
Scale I Transf	er state nat file Genera on Zma	ate .inp		View Front F	\$ Edit Propa	0 .inp		Projection 3D C	normal Compute	

- interactive setup of 3D fracture mechanics simulations
- automatic generation of input files for different steps
- default settings for main parameters
- interactive post-processing/visualization
- storage of the current state of the simulation setup in a history file

Import of a FE cyclic input file

- input deck to do 1 cycle on the uncracked (sane) geometry
- must include preloading steps if any
- in the linear-elastic case the unloading steps are not necessary

Import GUI controls

• 1. give the name of the FE input file

Conform 3D crack propagation	toolbox		
General Import/Export/Hotspo	ots Cracks Insertio	on SIF Propagation Adva	nced
Environment b Sane name nput 1	ditor nedit	#CPU for SMP 4	_
Min size 0.0200000	Max size 0.450000	Gradation 2.30000	
Curvature refine	1		
Save	Open	Quit	1
		J	

• button (b) can be used to browse for the input file

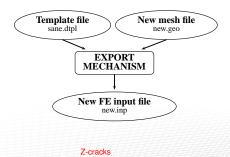
Import GUI controls

- 2. select an FE code (Abaqus, Ansys, Zebulon, Samcef)
- 3. click Import

		ZCracks		
Conform 3D cr	ack propagation toolbo	x		
General Imp	ort/Export/Hotspots C	acks Insertio	n SIF Propagation Adva	inced
Import form 24	abaqus_templated	•	C Quadratic input mesh	
3 Import	Check import	Medit	Zmaster	
Z8 database	(merge results databas	es)		
Generate .inp	Edit .inp	Export Z8	Zmaster	

Import results

Import results:


- a template file input.dtpl
- a Zebulon mesh input.geo
- click on Zmaster (4) to view the imported mesh

ZCracks					
Conform 3D crack propagation toolbox					
General Imp	ort/Export/Hotspots	Cracks Insertio	n SIF Propagation Adv	anced	
Import format abaqus_templated					
Import	Check import	Medit	4 Zmaster		
Z8 database	(merge results datab	ases)			
Generate .inp	Edit .inp	Export Z8	Zmaster		

Import template file

- ASCII file (may be modified by the user)
- created from the original FE file in order to:
 - * remove mesh objects (nodes, elements, group definitions)
 - $\star\,$ preserve bcs, loads and step definitions
 - if needed, change bc/loads syntax for commands using named objects (nsets, bsets, surfaces preserved after remeshing)
- used to generate a new FE input file when the mesh is changed (crack insertion/propagation)

Crack definition/meshing

Can be defined either by:

- the geometric definition of simple crack shapes (circles, ellipse)
 - * coordinates of the circle (ellipse) center
 - * vector normal to the crack plane
 - * crack size (circle radius)
 - $\star\,$ for an ellipse definition of an additional minor axis direction and radius

or a mesh (Zebulon format) of the crack surface (2D or 3D shell elements)

Crack mesh GUI controls

• 1. Size of elements at the crack tip

Conform 3D crack propagation toolbox					
General Import/Export/Hotspo	ots Cracks	Insertion	SIF	Propagat	ion Advanced
Environment Sane name input	Editor	edit #	CPU	for SMP 🛛	1
Remeshing process parameters					
Min size 1 (0.0200000	Max size 0	.450000 C	Gradat	tion 2	2.30000
Curvature refine					
Save	Ope	n		Qui	it

size in the same unit as the one used for the mesh

Crack mesh GUI controls

- 2. Crack (circle) center
- 3. Vector normal to the crack plane
- 4. Size (circle radius)
- 5. Click Run to mesh the crack

	ZCrack	s		
Conform 3D crack propagatio				
General Import/Export/Hots	pots Cracks Insert	ion SIF	Propagation	Advanced
Surface id 0	Load		Zmaster stru	ct
Penny shape crack Center 2 0.00000.000	Norma 0.0000	Radius	4 1.000	<u> </u>
Ellipse shape crack	_		_	
□ Ellipse	Direction 1.00000	Ortho/d	ir radius 3.000	00
User defined crack shape				
Surface mesh	Convert	1		
5 Run	Run all]		
Visualization				
Medit	Zmaster			

vectors (center, normal) are specified as 3 float values separated by a blank space a "." is mandatory in the definition of float values

Multiple cracks definition

- to define an additional crack, just change the crack id in (6), and define the geometric parameters in (2),(3),(4) as in the previous case
- clicking on (7) loads the geometric definitions associated to the crack id specified in (6), thus allowing to change the values if needed
- (5) remesh only the crack specified in (6), while (8) mesh all cracks at once

		ZCracks			
Conform 3D crack propagati	on toolbox				
General Import/Export/Hot	spots Cracks	Insertion	SIF	Propagation	Advanced
Surface id 6 1	7 Load			Zmaster stru	ct
Penny shape crack	_	_		\sim	_
Center 2 1.0000 0.000	OC Norm	000 0 Ra	adius	4 (2.000	0
Ellipse shape crack	_	_		\sim	
⊏ Ellipse	Direction 1.0	0000 0 OI	tho/di	r radius 3.000	000
User defined crack shape					
Surface mesh	Conver	t			
\cdot					
	8 (Run al	\mathcal{L}			
Visualization	\sim				
Medit	Zmaste	r			
	Zorocka				

Crack mesh results

- a mesh (Zebulon format) of the crack(s) surface(s) crack.geo
- click Medit (6) or Zmaster (7) to view the crack mesh

			ZCracks	5			
Conform 3D cra	Conform 3D crack propagation toolbox						
General Impo	ort/Export/Hotsp	oots Crac	ks Inserti	on SIF	Propagation	Advanced	
Surface id	0	Lo	ad		Zmaster str	uct	
Penny shape c	rack						
Center	0.00000 0.0000	Normal	0.00000 0	Radius	1.00	000	
Ellipse shape c ⊏ Ellipse	rack	Direction	1.00000 0	Ortho/d	lir radius 3.00	000	
User defined cr	ack shape						
Surface mesh		Con	vert				
Visualization		Rur					
- 0 (Me	edit	/(Zma	aster				

size of triangular elements near the crack front should correspond to the one defined in the General Tab (1)

Crack insertion in the sane mesh

Generalities: Distene remeshing tools

- For remeshing Z-cracks makes an heavy use of various software modules of MeshGems Suite distributed by the DISTENE company:
- * MeshGems-SurfOpt: surface remeshing tool
- MeshGems-Tetra: 3D tetrahedral mesh generator taking as input a surface mesh representing the boundary of the object
- MeshGems-Adapt: adaptive surface and/or volume remeshing tool, that can handle both a boundary surface mesh and a 3D initial tet mesh at the same time
- those remeshing tools work directly from an input mesh (i.e. no CAO definition is needed), thus offering a great flexibility and an easy interface with arbitrary FE software
- they are automatically driven by **Z-cracks** when performing crack insertion/crack advance remeshing operations
- specific license keys are needed that should be obtained directly from the Z-set distributor

Generalities: algorithm

Crack insertion is an automatic 2-phase process that may be roughly summarized as:

- Phase 1: cutting of the original geometry by the crack mesh produced during step 2 the result is an intermediate mesh with the discontinuity (crack surfaces) explicitly introduced in the geometry.
- Phase 2: remeshing of the previous to obtain a good quality mesh (respecting the size required near the crack front) needed to compute accurate values of SIF at the crack tip

Generalities: remeshing controls

Phase 2 remeshing is mainly controlled by 3 parameters:

- the Min size value (1) of elements at the crack tip
- the Max size (2) of elements generated during remeshing
- the **Gradation** factor (3) or element size rate of increase when distance to the crack front is growing

Conform 3D crack propagation to	olbox		
General Import/Export/Hotspot	s Cracks Insertio	n SIF Propagation	Advanced
Environment Sane name input I Remeshing process parameters	Editor nedit	#CPU for SMP 4	
Min size 1 0.02000000 I	Max spe 0 450000	Gradation 3 2.300	
Curvature refine			9
Save	Open	Quit	

the remesher only handles tet elements, such that quads in the initial geometry will be automatically converted to tets

Generalities: remeshing the whole structure

• leave unchecked the Must extract elset check-box (4)

1		ZCracks	
	Conform 3D crack propagatio	on toolbox	
	General Import/Export/Hots	spots Cracks Insertion SIF Propagation Advanced	
	Sets to keep during remeshing		
	Elsets	Fasets Lisets	
	Ridges	Nsets	
	_		
	Remeshing zone Cracked elset NEW	Electionality 2 00000	
	Cracked elset INEW	Elset radius 2.00000	
4	Uust extract elset		
	Moving elset		
	C Quadratic mesh		
	□ Quarter nodes		
	□ Refine before insert		
	Insert	Medit Zmaster	

- the output mesh contains only volume tet elements
- node and element positions/ids are not preserved

Generalities: remeshing a region around the crack to

- select Must extract elset (4)
- set NEW as the name of the elset containing the remeshed region in the Cracked elset text-field
- give size of the region using the Elset radius (6) text-field

	ZCracks		
Conform 3D crack propagation	n toolbox		
General Import/Export/Hots	pots Cracks Insertion S	SIF Propagation Ad	vanced
Sets to keep during remeshing Elsets Ridges Remeshing zone Cracked elset Cracked elset Moving elset Quarter nodes Refine before insert	Fasets Nsets Elset rate (2000)	Lisets	
Insert	Medit	Zmaster	

 node and element positions/ids outside the remeshed region are preserved (including non volume elements)

Generalities: remeshing a subset

- select Must extract elset (4)
- set the name of an elset containing elements of the subset in the Cracked elset text-field
- set **0.0** in the **Elset radius** (6) text-field to imply that the whole subset is remeshed

ſ	ZCracks
	Conform 3D crack propagation toolbox
	General Import/Export/Hotspots Cracks Insertion SIF Propagation Advanced
4	Sets to keep during remeshing Elsets Fasets Liaets Ridges Nsets Cracked else (PART) Elset race (0.0 Moving elset Guadratic mesh C Quadra nodes Refine before insert
	Insert Medit Zmaster

 mandatory for contact between to avoid fusion of contacting nodes: set Cracked elset as one of the 2 contacting components (i.e. the one with the crack)

Generalities: remeshing a region inside a subset

- select Must extract elset (4)
- set the name of an elset containing elements of the subset in the **Cracked elset** text-field (5)
- set the size of a region around the crack tip using the Elset radius (6) text-field

1		ZCracks		
	Conform 3D crack propagation			
	General Import/Export/Hotsp	oots Cracks Insertion S	SIF Propagation Advanced	
4	Remeshing zone	Fasets Nsets	Lisets	
	Insert	Medit	Zmaster	

 an elset named NEW will be created with the size specified inside the PART1 elset

Generalities: sets/components preservation

Conform	3D crack propagation to	olbox				
General	Import/Export/Hotspots	Cracks	Insertion	SIF	Propagation	Advanced
Sets to k Elsets Ridges	teep during remeshing 1 MAT1 MAT2 N 4 Ns	_	NSET1 N		sets 3	_

- Elsets (1) : elsets (in the remeshed subset) used to affect material properties should be declared here
- Fasets (2) : fasets are surface elements in the **Z7** mesh. Fasets are automatically created during import from surface loads/bcs and contact definitions found in the input file. Those are automatically preserved and there is no need to specify their names using (2). However additional surface definitions may be added here for preservation
- Nsets (5) : nsets are list of nodes used to apply boundary conditions. Those are automatically created in the output **Z-set** mesh obtained during import. Preservation is not automatic and pertinent nset names should be explicitly defined here to allow valid bcs definition after export

Generalities: guidelines and pitfalls

- prefer named components to apply loads and bcs, instead of node ids
- define an elset containing only supported (volume) elements and boundary conditions and remesh only a subset of the latter
- non-uniform surface loads are not supported
- nodal bcs and nset preservation in the remeshed part:
- should be used only for point load/bcs, because preservation of geometric positions of large collection of nodes result in too much constraints on remeshing and poor quality end result mesh
- ⋆ ids are not preserved
- ⋆ only surface nodes can be preserved
- Z-cracks attempts to transform nsets to surfaces automatically. Those are automatically preserved (without constraint on the remeshing), and translated back to nsets during export of new FE command files. This works fine for uniform bcs, but cannot be used in a submodeling procedure.

Crack insertion GUI controls

- 1. give the size of elements at the crack tip (General tab, same definition as for step 2)
- 2. click Insert to run crack insertion

	ZCracks
Conform 3D crack propagation	n toolbox
General Import/Export/Hots	pots Cracks Insertion SIF Propagation Advanced
Sets to keep during remeshing	
Elsets	Fasets
Ridges	Nsets
, Demoching some	
Remeshing zone	
Cracked elset NEW	Elset radius 2.00000
Must extract elset	
☐ Moving elset	
Quadratic mesh	
Quarter nodes	
□ Refine before insert	
2 (Insert)	3 Medit 4 Zmaster
\smile	\smile \bigcirc

 view the output cracked mesh using Medit (3) or Zmaster (4)

Crack-related components in the geo file

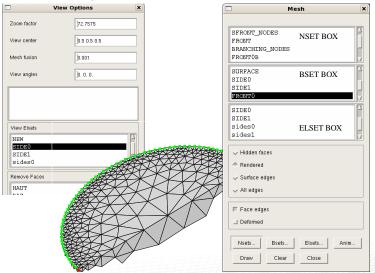
- insertion output is a Z7 meshfile (geo file with name cracked.geo) that can be loaded in Zmaster for display
- besides mesh objects translated from the FE input file, various crack-related components are added that may be worth looking through to control the output:
- nsets (group of nodes)
 FRONT : nodes on crack front
 lip : nodes on crack lips
- bsets (surface or line elements)
 FRONT0, FRONT1 ... : individual crack front lines
 SIDE0, SIDE1 : surface elements on both sides lips
- elsets (group of elements)
 SIDE0, SIDE1 : elements connected to lip nodes on both sides

Crack front

		Mesh		
	F	FRONT_NODES RONT RANCHING_NODES RONTOB	NSET BOX	
	s	URFACE IDE0 IDE1 RONTO	BSET BOX	
	s	IDEO IDE1 ides0 ides1	ELSET BOX	
		 Hidden faces Rendered Surface edges 		
		> All edges		
A A A A A A A A A A A A A A A A A A A		Nsets Bsets Draw Clear	Elsets Ani Close	m

Display of the crack front line set using Zmaster

Lip elsets


Mesh X		
SFRONT_NODES NSET BOX FRONT BRANCHING_NODES FRONTOB		
SURFACE BSET BOX SIDE0 SIDE1 FRONTO		
STDD1 sides0 ELSET BOX		
 ◆ Rendered ✓ Surface edges ✓ All edges 		
Face edges		
Nsets Bsets Elsets Anim Draw Clear Close		

Display of lip side elsets using Zmaster

Lip elements elset selection

Selection of elset SIDE0 by Menu/View Options

Plot only those elements

with the Mesh command

Step 4

SIF calculation

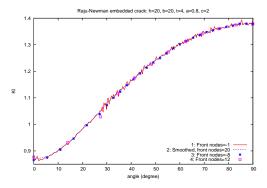
- automatic generation of FE input file to do 1 cycle on the cracked mesh
- cycle computation
- post-processing of FE results to get SIF values:
- \star energy release rate G (thermo-elasticity, plasticity)
- ★ stress intensity factors K_I, K_{II}, K_{III} (thermo-elasticity)
- \star bifurcation angle α

Generalities: SIF calculation by the G-theta method

- integral over the whole domain of the potential energy derivative wrt a crack virtual extension field θ
- no integration box definitions as in other methods (Domain Integrals, Crack Tip Contour Integrals)
- can be used with tets unstructured meshes obtained after remeshing (Step 3)
- see theory for some details on the method and validation for results obtained on classical (semi-)analytical problems

Crack front discretization

The front is discretized by spline elements built on *np* control points (see theory) and SIF value ($G, K_I \dots$) are evaluated at those points


	ZCracks		
Conform 3D crack propagation toolbox			
General Import/Export/Hotspots Crac	ks Insertion SIF Propagation Advanced		
G-theta parameters (default branching direction is obtained by a vectorial Gmax) Front node 3			
Gnuplot visualization			
Front# 0 Temperature			
□ Compute SIF □ -> MPa*sqrt(m) □ Outplane			

Several options may be used to define those control points:

- specify the exact number of points *np* on the front: set a positive *np* value in (1)
- one point each *nno* nodes on the front: set a negative (*-nno*) value in (1)
- one point at each node, but smooth the output by the LOESS method using subsets of size *ns*: select (2), and give a positive *ns* value in (1)

Crack front discretization: influence on the results *K*_l evolutions on the crack-front in the case of an elliptic embedded crack (see Raju-Newman validation).

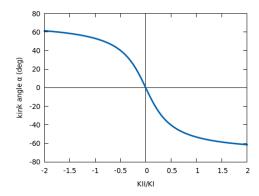
- oscillations when K_l is computed at each node (218 points) of the FE mesh (curve 1)
- result of the smoothing algorithm (curve 2)
- one point every 8 FE nodes (curve 3, 218/8 = 27 control points)
- distribution of 12 points equally spaced (curve 4)

Choice of a particular SIF output quantity Choice of the SIF output (G or $K_{I,II,II}$) has an influence on the propagation law and the bifurcation angle (Outplane propagation).

	Conform 3D crack propagation toolbox		
	General Import/Export/Hotspots Cracks Insertion SIF Propagation Advanced		
	G-theta parameters (default branching direction is obtained by a vectorial Gmax) Front nodes [-8		
	Gnuplot visualization Front# 0 Temperature		
3	Compute SIF 4 Conteraction integral □ Smoothing □ -> MPa*sqrt(m) □ Outplane propagation □ Lips contact		

- default (i.e. when (3) and (4) are left unchecked) is to compute the strain energy release rate *G* (the only valid measure when material non-linearities are included).
- when (3) is selected the propagation law should be given in terms of K_I (MPa.sqrt(m)) instead of G (MPa.m)
- in the latter case, when (4) is unchecked, K_l is computed directly from *G* using the classical plane-strain equation $K_l = \sqrt{\frac{EG}{1-\nu^2}}$ (use with caution at points close to the free surface)
- when both (3) and (4) are selected the G-theta method is used to compute directly the *K*_{1,II,II} values (see theory)

Out-of-plane propagation and bifurcation angle a (12)


Conform 3D crack propagation toolbox										
General Import/Export/Hotspots Cracks Insertion	SIF Propagation Advanced									
G-theta parameters (default branching direction Front nodes -8	i is obtained by a vectorial Gmax)									
Gnuplot visualization Front# 0 Temperature	i									
Compute SIF -> MPa*sqrt(m)	□ Smoothing □ Lips contact									

- when (5) is checked-out a bifurcation angle is evaluated at each point of the crack front, using the fracture mechanics quantities computed by the G-theta method. The criterion used then depends of the choice made in (4):
- if (4) is left unchecked a default G_{max} criterion is used to calculate α. A G_{II} value is then computed in a direction normal to the crack plane, allowing to define the angle as α = atan (G_{II}/G)
- when (4) is selected, K_{ll} given by the **Interaction integral** method is used to compute a bifurcation angle maximizing the $\sigma_{\theta\theta}$ principal stress according to the following equation:

$$\alpha = 2 \operatorname{atan}\left(\frac{K_{l}/K_{ll} + \sqrt{(K_{l}/K_{ll})^{2} + 8}}{4}\right) \operatorname{sign}(K_{ll})$$
Z-cracks

Out-of-plane propagation and bifurcation angle a (2(2)

Crack propagation direction α as a function of the K_{II}/K_I ratio according to the $\sigma_{\theta\theta max}$ model.

SIF extraction GUI controls

- fill-out various G-theta parameters/options (see SIF generalities)
- generate a computation script by clicking on (6). A file named cracked_SIF.z7p is written with Zprogram command line interpreter instructions (C/C++ syntax).
- run the script by pressing (8). Note that, once generated, the script can also be launched from a shell window using command:
 - \$ Zrun -zp cracked_SIF.z7P
- (7) allows to edit the script from the GUI (see reference)

Conform 3D crack propagation toolbox										
General Import/Export/H	General Import/Export/Hotspots Cracks Insertion SIF Propagation Advanced									
G-theta parameters (default branching direction is obtained by a vectorial Gmax) Front nodes -8										
Gnuplot visualization Front# 0	Temperature	ī								
□ Compute SIF □ -> MPa*sqrt(m)	 Interaction integral Outplane propagation 	□ Smoothing □ Lips contact								
6 Generate .inp	7 Edit .inp	8 Compute								

SIF extraction GUI controls

	ZCracks										
Conform 3D crack propage	ation toolbox										
General Import/Export/H	otspots Cracks Insertion	SIF Propagation Advanced									
G-theta parameters Front nodes -8	(default branching direction	is obtained by a vectorial Gmax)									
Gnuplot visualization Front# 0	Temperature										
Compute SIF → MPa*sqrt(m)	□ Interaction integral □ Outplane propagatier()	⊂ Smoothing Puips contact									
Generate .inp	Edit .inp	Compute									
Visualization											
Zmaster	11 Post-process	G/SIF values									
Plot G	Plot SIF	Plot Temperature									
Plot Branching	Plot Front										

- select (9) to obtain SIF values in MPa.sqrt(m) when units in the FE problem are given in (MPa,mm)
- when (10) is selected, contact between the crack lips is automatically added to the FE input files (useful for negative loading ratios)
- once calculation of a cycle has been performed, (11) can be used to run again the SIF extraction post-processing, for example after having changed the various options (discretization, G/K selection, bifurcation angle criterion).

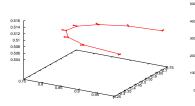
SIF results visualization

- results of 1 cycle applied to the cracked mesh are named cracked_SIF.*
- can be loaded in the native viewers (Abaqus CAE or Ansys post) or directly in Zmaster using (12)
- SIF post-processing generates ASCII files (see reference) that can be displayed by various plot commands (14) to (18)

	ZCracks									
Conform 3D crack propag	ation toolbox									
General Import/Export/H	lotspots Cracks Insertion	SIF Propagation Advanced								
G-theta parameters Front nodes -8	(default branching direction	is obtained by a vectorial Gmax)								
Gnuplot visualization										
Front# 0	Temperature									
Compute SIF	Interaction integral	☐ Smoothing								
⊠ -> MPa*sqrt(m)	Outplane propagation	✓ Lips contact								
Generate .inp	Edit .inp	Compute								
Visualization										
12 Zmaste	Post-process	13 G/SIF alues								
14 Plot G	15 Plot SI	16 Plot Temperature								
17 Plot Branching 18 Plot Frant										

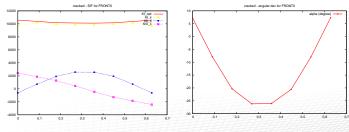
Display of cracked results file

		Results	×
XH	Мар	þ	
MIMMIN DAX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Time]1.00000000e+00	
	Magnification	J1.0	
	Results factor	J1.0	
	U1. U2 NC U3 RU1	DDE OUTPUT	
	signises sig11 EL sig22 sig33	EMENT OUTPUT	
	 Rendered Contour 		
	✓ Contour	ata	
	I Mesh outline		
WWWWV1XXX/V1×	F Deformed		
	Initial mesh		
	Draw Previo	Next More	
8.1e+03 1.3e+04 1.9e+04 2.9e+04 3.5e+04 4e+04 4.5e+04 5e+04 5.5e+04 6.1e+04 2.8e+03 sigmises map:1.00000 time:1 min:2767.08 max:66315.9	Anim Clos	e	7-/-


Isocontours with **Zmaster**

SIF plots

Plot front (18)

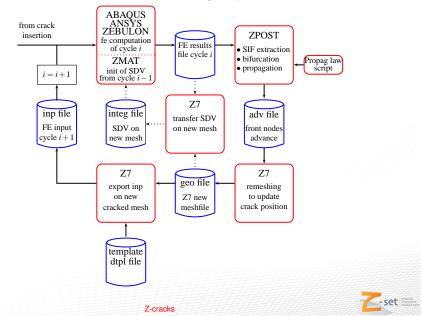

Plot G (14)

Plot Branching (17)

0.6

Plot SIF (15)

Fatigue crack propagation



Crack propagation loop

for i = 1 to n_c computed cycles

Lan To Caller

Generalities: required advance

	Conform 3D cra	Conform 3D crack propagation toolbox									
	General Impo	ort/Export/Hots	pots	Cracks	Insertion	SIF	Propagation	Advanced			
	Geometric parameters										
	Max advance	0.100000	Fron	ıt ini lengt	h 0.50000)0	#Output 1	16			
	Fatigue cycles	\smile			,						
	Initial time	0.00000	Cycl	e DeltaT	2.00000)	#Cycles 1	10			
	Propagation la	w			,						
(paris)std 2	•		Se	t coefs		Advanced	propag			
1	\mathcal{O}										

- to guarantee a significant advance at each *computed* cycle, remeshing is controlled by the Max advance parameter given in (1)
- the propagation law is then *inverted* to derive the *real* number of cycles (N_r) needed to reach the advance required. In case of a simple Paris law (2), N_r is then evaluated as:

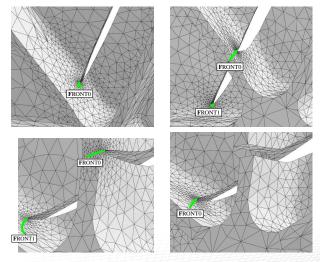
$$N_r = Max \ advance \ \left[C \ \left(\Delta K_{max} \right)^m \right]^{-1}$$

where ΔK_{max} is the maximum value of the SIF amplitude ΔK (can be *G* or *K*_l) calculated over all crack front points

Generalities: propagation laws

	Conform 3D crack propagation toolbox									
	General	Impo	ort/Export/H	otspots	Cracks	Insertion	SIF	Propagation	Advanc	ed
	Geometric parameters									
	Max adv	ance	0.100000	Fror	nt ini lengt	h 0.5000	000	#Output	16	
	Fatigue c	ycles								
	Initial tim		0.00000	Cyc	le DeltaT	2.0000	0	#Cycles	10	
	Propagat	ion la	w		\sim					
(paris)std	2		•	(Se	t cgefs	3	Advanced	propag	
1						/				

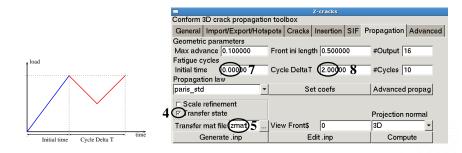
- use the combo box (2) to select a propagation law
- the **Set coefs** button (3) opens a dialog allowing to enter values for coefficients corresponding to the model selected:


Set coefficients								
read from file:paris_std.mat								
С	1.00000e-12							
m	3.00000							
Write	Close							

models available are described in the Propagation laws section

Management of crack multiple fronts

In addition to multiple cracks definition at Insertion, **Z-cracks** handles new crack fronts that are created when crossing obstacles ... and may eventually disappear afterwards


Transfer of plasticity state from the previous cycle

					Z-cracks				
	Conform 3D cra	ack propagat	ion too	lbox					
	General Impo	ort/Export/Ho	tspots	Cracks	Insertion	SIF	Propagation	Adva	nced
	Geometric para	ameters							
	Max advance	0.100000	Fror	nt ini lengt	h 0.5000	00	#Output	16	_
	Fatigue cycles				·				
	Initial time	0.00000	Cyc	le DeltaT	2.0000	0	#Cycles	10	_
	Propagation la	w			,				
	paris_std		-	Se	t coefs		Advanced	l propa	g
	_ □ Scale refine	ment							
4	🕝 ransfer sta	ite	6				Projection	norma	I
	Transfer mat fi	ile zmat) 5	Viev	/ Front\$	0		3D		•
	Genera	ate .inp		Ed	dit .inp		Com	oute	

- material internal variables obtained at the end of a cycle can be used to initialize the next cycle (see propagation loop)
- this mechanism is implemented in the Z-mat user material subroutines available for Abaqus and Ansys, such that the use of Z-mat in the FE calculation is mandatory to allow this advanced option
- to activate the SDV transfer capability select (4) and give the name of the **Z-mat** file in (5) (or use the browse button (6) to select one)

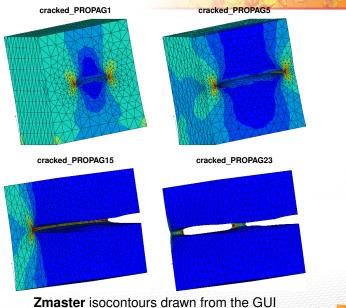
Definition of a preloading step before cycling

- a preloading step can be defined by setting **Initial time** to a non-zero value in (7)
- corresponding results are then skipped to compute ΔK
- in addition, if the **Transfer state** option (4) is activated, preloading increments are automatically removed from the FE input decks generated at all cycles except the first one

Crack propagation GUI controls

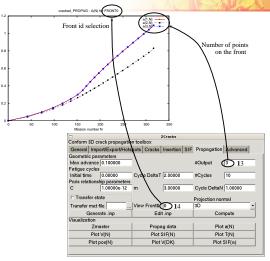
- enter the number of cycles to compute in (9)
- generate a computation script by clicking on (10). A file named cracked_PROPAG.z7p is written with Zprogram command line interpreter instructions (C/C++ syntax).
- run the script by pressing (12). Note that, once generated, the script can be launched from a shell window using command:
 - \$ Zrun -zp cracked_PROPAG.z7P
- (11) allows to edit the script from the GUI (see reference)

Z-cracks									
Conform 3D cra	ack propagatio	n toolbox							
General Impo	ort/Export/Hots	pots Cracks	Insertion SIF	Propagation Advanced					
Geometric para	ameters								
Max advance 0.100000 Front ini length 0.500000 #Output 16									
Fatigue cycles									
Initial time	0.00000	Cycle DeltaT	2.00000	#Cycles 10 9					
Propagation la	Ŵ			Ŭ					
paris_std	•	S	et coefs	Advanced propag					
⊂ Scale refine ⊂ Transfer sta				Projection normal					
Transfer mat f	ile	View Front\$	0	3D -					
10 Genera	ate .inp	11 E	dit .inp	12 Compute					


Propagation results visualization

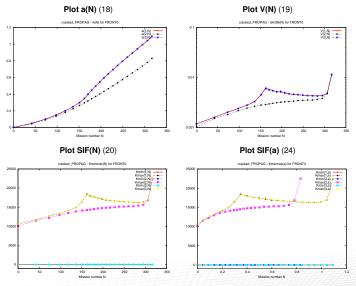
- propagation FE results files are named cracked_PROPAGi.* with i the cycle number
- those files can be loaded in native viewers or in **Zmaster** using (12). In this case the cycle loaded is given by (9)
- a cracked_PROPAG.zck file is maintained during cycles in order to draw SIF evolutions with commands (18)-(24) (see reference)

ZCracks								
Conform 3D crack propagation	on toolbox							
General Import/Export/Hot	spots Cracks Insertion SIF	Propagation Advanced						
Geometric parameters		, , , , , , , , , , , , , , , , , , , ,						
Max advance 0.100000		#Output (16) 13						
Fatigue cycles		<u> </u>						
Initial time 0.00000	Cycle DeltaT 2.00000	#Cycles 10 9						
Paris relationship parameters								
C 1.00000e-12	m 3.00000	Cycle DeltaN 1.00000						
Transfer state		Projection normal						
Transfer mat file	View Front\$ 14	3D 15 🕐						
Generate .inp	Edit .inp	Compute						
Visualization								
16 Zmaster	17 Propag data	18 Plot a(N)						
19 Plot V(N)	20 Plot SIF(N)	21 Plot T(N)						
22 Plot pos(N)	23 Plot V(DK)	24 Plot SIF(a)						
Transfer mat file View Fronts 14 3D 15 Generate .inp Edit .inp Compute Visualization 16 Zmaster 17 Propag data 18 Plot a(N) 19 Plot V(N) 20 Plot SIF(N) 21 Plot T(N)								

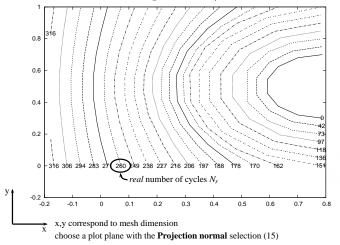


Isocontours on cyclic FE results files

Propagation plots definition



 caution, changing the number of points (13) between restarts may confuse plot interpretation

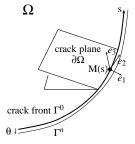

Propagation plots

x axis: real number of cycles N_r (see required advance)

Front advance plots

cracked PROPAG - FRONTS positions

plot all fronts during propagation cycles


Export to a Z8 database

Conform 3D crack propagation toolbox									
General Import/Export/Hotspots Cracks Insertion SIF Propagation Advance									
Import format	abaqus_templated	_	1	- Qua	adratic input m	lesh			
Import	Check import		Medit		Zmaster				
Import Check import Medit Zmaster Z8 database (merge results databases) Genegate .inp 2 (Edit np 3 (Export Z8) 4 (Zmagter									

- the Export Z8 command (3) of the Import/Export Tab allows to collect separate cyclic results file (cracked_PROPAG1, cracked_PROPAG2...) in a single Z8 database, an output format that supports remeshing
- this database can then be loaded in **Zmaster** (4) to draw animations of crack propagation results
- (1) generates the (default) input command for **Export Z8**. To cut down disk storage, editing the input with (2) allows to add ***frequency** options, and select which increments/cycles should be stored in the database

G-theta method theory (1/2)

Transformations F^n of domain Ω to Ω^n due purely to crack propagation

$$F^n : M \to M + \eta \theta(M)$$

 θ : crack extension virtual field that modifies only the position of the crack front Γ_0 $\theta \in \Theta = \{\mu \text{ such that } \mu.e_3 = 0\}$ (tangent to the crack plane)

The stress energy release rate $G(\theta)$ for crack extension θ is given by the Lagrangian derivative of potential energy W:

$$G(\theta) = -\frac{\partial W}{\partial \eta}$$

For thermo-elasticity the right-hand side reduces to :

$$\frac{\partial \boldsymbol{W}}{\partial \eta} = \int_{\Omega} \left[\frac{1}{2} \left(\boldsymbol{\sigma} : \left(\boldsymbol{\epsilon} - \boldsymbol{\epsilon}^{th} \right) \right) \nabla \boldsymbol{\theta} - \boldsymbol{\sigma} : \left(\nabla \boldsymbol{u} \nabla \boldsymbol{\theta} \right) \right] d\Omega$$

G-theta method theory (2/2)

The left-hand side is obtained by integration on the crack front Γ^0 :

$$G(heta) = \int_{\Gamma_0} G(s) \ heta(s) \ e_1(s) \ ds$$

 n_p control points Discretization by n_p control points with shape functions $N_j(s)$:

Crack front

$$\begin{split} G(s) &= \sum_{j=1}^{n_p} G_j N_j(s) \quad , \quad G(\theta) = \sum_{j=1}^{n_p} G_j \int_{\Gamma_0} \theta(s) N_j(s) \, ds \, , \, \forall \theta \in \Theta \\ \text{For } \theta^i \ (i = 1, n_p) \text{ virtual fields } \theta^i(s) \cdot e_1(s) = N_i(s) : \\ G(\theta^i) &= \sum_{j=1}^{n_p} G_j \int_{\Gamma_0} N_i(s) N_j(s) ds \quad i = 1, n_p \\ &= \int_{\Omega} \left[\frac{1}{2} \left(\sigma : (\epsilon - \epsilon^{th}) \right) \nabla \theta^i - \sigma : (\nabla u \nabla \theta^i) \right] d\Omega \end{split}$$

a system with n_p unknowns G_i $(j = 1, n_p)$

SIF extraction using the G-theta method (1/2)

Introducing the same discretization of a G^{ν} value on the crack front Γ^{0} as the one defined for *G* previously:

$$G^{\nu}(s) = \sum_{j=1}^{n_p} G^{\nu}_j N_j(s)$$

it is possible to evaluate an interaction integral using any virtual displacement field v in combination of the FEA obtained displacement u in the following formulation:

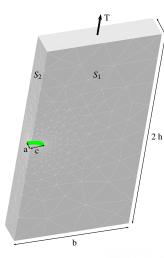
$$\sum_{j=1}^{n_p} G_j^{\nu} \int_{\Gamma_0} N_i(s) N_j(s) ds =$$
$$\int_{\Omega} \left[\frac{1}{2} \left(\sigma(u) : (\epsilon(v)) \right) \nabla \theta^i - \sigma(v) : \left(\nabla U \cdot \nabla \theta^i \right) \right] d\Omega$$

Introducing, in the previous equation, any pure mode I, II or III Westergaard displacement solutions $v^{I,II,III}$, defined in the crack front vicinity, allows to compute associated $G^{v,I,II,III}$ values. The following Irwin formula for a given isotropic linear elastic behavior, leads to each associated SIF $K_i^{I,II,III}$ along the front discretization:

$$\sum_{j=1}^{n_p} G_j^{v,l,ll,lll} \int_{\Gamma_0} N_i(s) \ N_j(s) ds =$$

$$\sum_{j=1}^{n_p} \frac{1-\nu^2}{E} \left(K_j^{I} K_j^{\nu,I} + K_j^{II} K_j^{\nu,II} \right) + \frac{1}{2\mu} K_j^{III} K_j^{\nu,III} \int_{\Gamma_0} N_i(s) N_j(s) ds$$

G-theta formulation in plasticity


A domain invariant integral can be computed in case of elastic-plastic material behavior. Such an approach evaluates the potential energy that would be released during an infinitesimal advance of the crack front considering a pure elastic evolution of the material submitted to a fixed inelastic residual stress field (generated by thermo-visco-plasticity). The integrated quantity G_p is defined by the following equation:

$$G_{\rho}(\theta^{i}) = \int_{\Omega} \left[\frac{1}{2} \left(\sigma : (\epsilon - \epsilon^{ae}) \right) \nabla \theta^{i} - \sigma : \left(\nabla u \nabla \theta^{i} \right) - \sigma : \nabla \epsilon^{ae} \cdot \theta^{i} \right] d\Omega$$

with: $\epsilon^{ae} = \epsilon - \epsilon^{e} = \epsilon^{th} + \epsilon^{p}$

Validation: Comparison with the Raju-Newman solution

- embedded crack: symmetry on the S_1 , S_2 faces
- surface crack: symmetry on the S₂ face
- corner crack: no symmetry bcs

Comparison with Z-cracks (n_p points on the crack front)

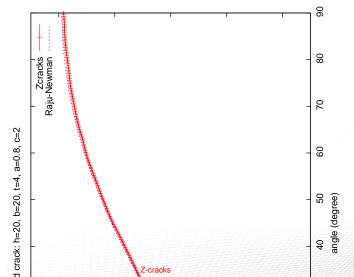
• max difference: $e_{max} = \max_{i=1,n_p} \left\{ \frac{|\kappa_{ij} - \kappa_{ij}^{raju}|}{\kappa_{ij}^{raju}} \right\}$

• average:
$$\bar{e} = \frac{e_{max}}{n_p}$$

Embedded elliptical crack

h = 20, b = 20, t = 4, c = 2, a = 0.8

quadratic mesh							linear mesh					
Min s	Grad	Qn	#dof	e _{max} %	ē%	Min s	Grad	#dof	e _{max} %	ē%		
5e-3	1.8	yes	480216	1.04	0.52	1e-2	1.8	32883	8.18	4.91		
1e-2	1.8	yes	245355	3.18	0.67	1e-2	1.2	152907	4.46	2.40		
2e-2	1.8	yes	125187	3.43	0.89	5e-3	1.2	313950	2.89	2.21		
4e-2	1.8	yes	63921	4.00	1.64	2e-3	1.2	737631	2.67	2.31		
1e-2	2.5	yes	166989	3.08	0.91							
1e-2	1.2	yes	1196433	???	???							
1e-2	1.8	no	245355	2.97	0.67							


- quadratic eles with large gradation value (\approx 2) offers the best cost/accuracy
- small gradation values (< 1.5) needed for linear meshes
- quarter node option significantly improves accuracy for quadratic meshes (caution: use only with linear elastic material)
- difference with Raju-Newman solution: 1% with quadratic and 3% with linear eles

Embedded elliptical crack

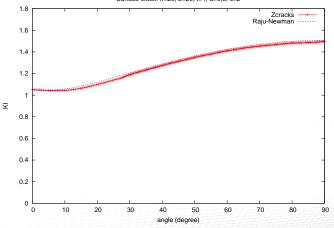
results with a quadratic mesh:

- min_size=0.01, gradation=1.8
- *e_{max}*=1.22% , *ē*=0.54%

Surface elliptical crack

$$h = 20$$
, $b = 20$, $t = 4$, $c = 2$, $a = 0.8$

	quad	ratic mesh		linear mesh						
Min s	Grad	Qn	#dof	e _{max} %	ē%	Min s	Grad	#dof	e _{max} %	ē %
5e-3	1.8	yes	480216	3.05	2.05	1e-2	1.8	32883	10.06	7.76
1e-2	1.8	yes	245355	3.40	2.19	1e-2	1.2	152907	5.89	4.37
2e-2	1.8	yes	125187	5.48	2.42	5e-3	1.2	313950	5.32	4.14
4e-2	1.8	yes	63921	6.29	3.10	2e-3	1.2	737631	5.31	4.26
1e-2	2.5	yes	166989	3.76	2.43					
1e-2	1.2	yes	1196433	???	???					


- same kind of results as in the embedded case
- difference with Raju-Newman solution: 2% with quadratic and 4% with linear eles

Surface elliptical crack

results with a quadratic mesh:

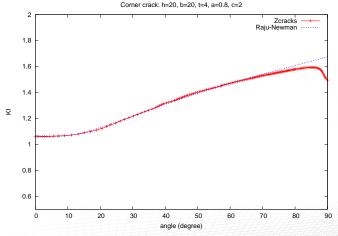
- min_size=0.01, gradation=1.8
- *e_{max}=2%*, *ē*=1.19%

Surface crack: h=20, b=20, t=4, a=0,8, c=2

Corner quarter-elliptical crack

$$h = 20$$
, $b = 20$, $t = 4$, $c = 2$, $a = 0.8$

quadratic mesh							linear mesh					
Min s	Grad	Qn	#dof	e _{max} %	ē%	Min s	Grad	#dof	e _{max} %	ē%		
5e-3	1.8	yes	480216	6.53	1.53	1e-2	1.8	32883	9.98	5.49		
1e-2	1.8	yes	245355	5.01	1.40	1e-2	1.2	152907	7.17	2.01		
2e-2	1.8	yes	125187	3.76	1.26	5e-3	1.2	313950	8.67	1.89		
4e-2	1.8	yes	63921	3.43	1.17	2e-3	1.2	737631	13.34	2.31		
1e-2	2.5	yes	166989	4.67	1.24							
1e-2	1.2	yes	1196433	???	???							


- same kind of results as in the previous case, except at the free surface where the Z-cracks solution deviates from the Raju-Newman one
- ???

Corner quarter-elliptical crack

results with a quadratic mesh:

- min_size=0.01, gradation=1.8
- e_{max}=6%, ē=1.07%

A wide variety of propagation models are available in Z-cracks, including:

- standard LEFM models (Paris, Elber, Forman, Walker)
- CRACKOXFLU advanced model (Kruch, Chaboche)
- an API allowing the user to define its own model in a Zprogram script

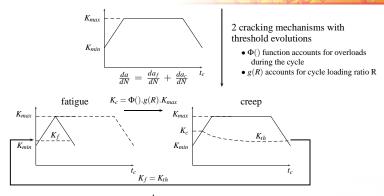
Standard LEFM propagation laws

notations

 K_{max}, K_{min} : min, max values of stress intensity factor K on the cycle $\Delta K = K_{max} - K_{min}$ $R = K_{min}/K_{max}$ (loading factor) $\langle f \rangle = f$ if f > 0 else $\langle f \rangle = 0$ (positive part)

model definition and required coefficients

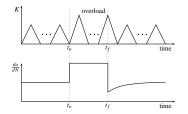
model	equation	coefficients
paris	$da = C (\Delta K)^m dN$	С, т
elber	$da = C \left< K_{max} - K_{op} \right>^m dN$	C, m, A, B
	$K_{op} = \langle K_{max} - (A + BR) \Delta K angle$	
forman	$da = rac{C \langle K_{max} - K_{th} angle^m}{(1-R) \langle K_c - K_{max} angle} dN$	C, m, K_{th}, K_c
walker	$da = C\left(rac{\langle \Delta K - K_{th} angle}{(1-R)^{(1-\lambda)}} ight)^m dN$	C, m, K_{th}, λ



Phenomenological model for crack propagation under complex cyclic conditions including:

- fatigue with closure effect due to plasticity
- creep damage under tensile open crack condition
- environment-driven embrittlement effects increasing the fatigue propagation rate
- interaction of overloads with both the fatigue and creep crack growth
- influence of anisothermal loadings on crack growth rate

CRACKOXFLU: basic ingredients


- loading ratio $R = \frac{K_{min}}{K_{max}}$
- toughness K_{Ic}
- fatigue threshold K_f
- Forman fatigue law : $\frac{da_f}{dN} = \frac{C_f \langle K_{max} - K_f \rangle^{\eta_f}}{(1-R) \langle K_{lc} - K_{max} \rangle}$

- creep threshold K_c
- creep damage integration on the cycle : $\frac{da_c}{dN} = \int_0^{t_c} C_c(T(t)) \langle K(t) - K_c \rangle^{\eta_c(T(t))}$
- threshold relaxation :

$$dK_{th} = -A\left(\frac{K_{th}}{K}\right)^{\omega} K dt$$

CRACKOXFLU: influence of overloads

- · crack growth rate increase during an overload
- rate decrease following the overload
- progressive vanishing of this effect until crack growth rate recovers its initial value

- definition of an effective $K_{Meq} = \Phi K_{max}$ used in the threshold calculation
- Φ depends on an estimation of current crack tip plasticity to account for overloads: Φ ≥ 1, Φ = 1 wo overload

size of plasticity at the crack tip: $\rho = \frac{1}{2\pi} \left(\frac{K_{Meq}}{\sigma_y}\right)^2$ (1) if $\left(K_{Meq}(i) \ge K_{Meq}(i-1)\right)$ increase of ρ using (1) , $\Phi = 1$ else

plasticity doesn't evolve but ρ is decreased by fatigue advance $\rho(i) = \langle \rho(i-1) - da_f \rangle$

(1) inverted to get K_{Meq} : $K_{Meq}(i) = \sigma_y \sqrt{2\pi\rho(i)}$, $\Phi = \frac{K_{Meq}(i)}{K_{max}(i)} > 1$

("i" index of current cycle in the applied loading)

CRACKOXFLU: influence of environment

crack tip embrittlement by oxidation increasing the fatigue propagation rate

• integration of an oxide penetration length *lp* during the cycle

$$lp = \int_0^{t_c} \frac{1}{4} \alpha(T(t)) t^{-\frac{3}{4}} dt$$

 $\alpha(T)$ material coefficient depending on temperature

decrease of *lp* by an amount corresponding to crack advance

$$\textit{lp} = \langle \textit{lp} - \textit{da}_{\it f} - \textit{da}_{\it c}
angle$$

• local toughness K_c dependence on Ip

$$K_c(lp) = K_{co} \left(1 - u - u \exp\left(rac{czm}{lp}
ight)
ight)$$
 , $lp > 0$

Kco toughness of a completely embrittled material, u, czm material coefficients

• use of $K_c(lp)$ in the fatigue law

$$\frac{da_f}{dN} = \frac{C_f \langle K_{max} - K_f \rangle^{\eta_f}}{(1-R) \langle K_c(lp) - K_{max} \rangle}$$

CRACKOXFLU: anisothermal effects

K(t), $t = 0, t_c$: K values during cycle of period t_c T(t), $t = 0, t_c$: temperature values

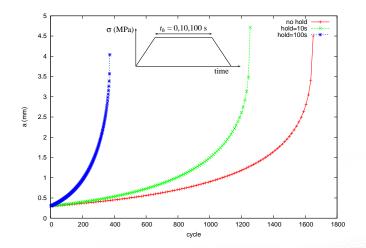
• normalization of K by $K_n(T)$

$$S(t) = \frac{K(t)}{K_n(T(t))} , \quad t = 0, t_c$$

toughness K_{lc} may be a good choice for K_n

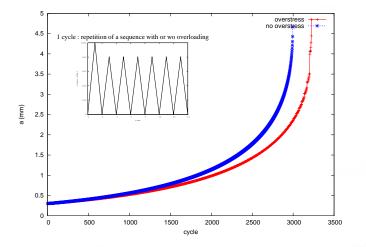
fatigue law written using S instead of K

$$\frac{da_{f}}{dN} = \frac{C_{f} \left\langle S_{max} - S_{f} \right\rangle^{\eta_{f}}}{\left(1 - R\right) \left\langle 1 - S_{max} \right\rangle}$$


with constant values for coefficients (C_f, η_f) calibrated on a master curve $\left(\frac{da}{dN} = f(\Delta S)\right)$ obtained from crack propagation tests at various temperatures

creep law with coefficients depending on temperature

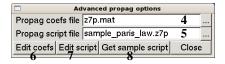
$$\frac{da_c}{dN} = \int_0^{t_c} C_c(T(t)) \ \langle K(t) - K_c \rangle^{\eta_c(T(t))}$$



CRACKOXFLU results: influence of holding time (creep)

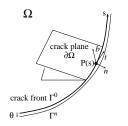
CRACKOXFLU results: influence of overloads

A simple API is available in Z-cracks to bypass built-in models and allow the user to implement its own propagation law in a Zprogram script (interpreted script language).

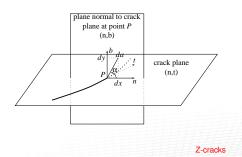


User models GUI controls

	Z-cracks							
Conform 3D crack propagation toolbox								
General Im	port/Export/Hots	pots Cracks	Insertion	SIF	Propagation	Advance	d	
Geometric parameters								
Max advance	e 0.100000	Front ini leng	th 0.50000	00	#Output 1	6		
Fatigue cycles								
Initial time	0.00000	Cycle Delta1	2.00000)	#Cycles 1	0		
Propagation law								
(z7p)1	•	(s	et cefs 🔅	3	Advanced	popag	2	
\smile			/		\sim	-		


- select z7p for a propagation model defined in a user script using combo box (1)
- use the **Advanced propag** command to open a graphics dialog allowing to define the name of the script file (5)

- (7) allows to edit the script file selected
- with (8) a sample user script is fetched from the Z-set database. This script implements a basic Paris law that can be used as a basis to write new models
- (4) allows to define the name of a file with model coefficients expected in the script, while (7) edits the material file selected


Definitions

for each point P(s) along crack front Γ^0 , and with the definition of a local frame (n, t, b) as represented on the figure:

- n normal to crack front at point P(s) in the crack plane
- t tangent to crack front at point P(s) in the crack plane
- *b* normal to the crack plane at point P(s)

and for the following definition of bifurcation angle α in plane (n, b), the user script should define:

- crack advance da in direction α
- projections (*dx*, *dy*) of *da* on local vectors (*n*, *b*):

 $dx = cos(\alpha).da$ $dy = sin(\alpha).da$

Propagation script API

the following 2 functions are expected in the propagation script:

Declaration of coefficients

Crack advance calculation

```
void declare_coefs() double compute_propag(VECTOR& Gtimes, VECTOR& G,
{ coef_names[0]="some_coef"; double d;
    coef_names[1]="K"; da = K()*...;
    ... dx = ...;
    coef_names[4]="another_coef"; dy = ...;
}
```

- coef_names is an array of strings. This array should be resized/filled with the corresponding names of coefficients to be read in the propagation material file. Coefs can then be referenced by their name in function compute_propag() using the () operator as shown above
- inputs of function compute_propag() are vectors whose size correspond to the number of increments stored in the FE results file for the current cycle:
 - ★ Gtimes, T: time and temperature values
 - * G: SIF values (G or K_l depending on the option selected) computed by the G-theta method for the current front point
 - $\star\,$ A: bifurcation angles computed by the G-theta post-processor
- outputs are the *da*, *dx*, *dy* scalar values of the crack advance defined in the previous slide

Propagation script example

An implementation of a simple Paris law using the user API is given hereafter for reference:

```
void declare coefs()
  coef names.resize(2);
   coef names[0]="C";
   coef names[1]="m";
double compute_propag(VECTOR& Gtimes, VECTOR& G, VECTOR& A, VECTOR& T, double& dx, double& dy
{ int i:
 double Gmin, Gmax, Amax, Tmax, da;
 // Get min max
 Gmax = 0.0; Gmin = 1.e50; Amax = 0.0; Tmax = T[0];
 for(i=0:i<!Gtimes:i++) {</pre>
      // Do not take into account initial transferred value
      if((!Gtimes>2)&&(Gtimes[i]<=0.0)&&(i==0)) continue;
      if(G[i]>Gmax) { Gmax = G[i]; Amax = A[i]; Tmax = T[i]; }
      if(G[i]<Gmin) Gmin = G[i];</pre>
 if (Gmin<0.0) Gmin = 0.0;
 if(!Gtimes==1) Gmin = 0.0;
  for(i=0;i<!coefficients;i++) coefficients[i].compute_value(Tmax);</pre>
 da = C() * (Gmax-Gmin)^m();
 // using the angle corresponding to Gmax to compute (dx,dv)
 dx = da \star cos(Amax):
 dy = da \star sin(Amax);
  return(da);
```


Zprogram scripts

- chains various operations involved in SIF computation and Crack Propagation procedures: generate input FE command to compute a cycle on the current cracked mesh, transfer fields on the cracked mesh when needed, calculate SIF and crack advance according to a given propagation law, remesh the structure according to the new crack position ...
- uses the command line interpreter built in the Zrun program (C/C++ syntax)
- can be modified/adapted by the user without compilation

SIF computation script: cracked_SIF.z7p

```
int main()
 STRING cmd, fe_cmd:
  init_var();
                                         initializations
 sane_name = "cube_abagus";
                                         from the GUI settings
  cracked_name = "cracked":
  thermal_field = "":
  format
                = "abagus_templated":
                = 2:
 smp
                = "Zmat -fg -mpi 2 ":
 fe_cmd
  if contact
                = 1;
  if (!thermal_field) {
                                                   mapping of thermal fields
                                                   on the cracked mesh
     write_thermal_tranfer_inp(0);
                                                   (if defined)
    cmd = "Zrun -fe_transfer transfer_therm":
     system(cmd):
 cmd = "Zrun -m EXPORT".
                                             write FE input file
                                            to do 1 cycle on the cracked mesh
 system (cmd);
 cmd = fe_cmd+" "+cracked_name+"_SIF";
                                           run FE calculation
  system (cmd);
 cmd = "Zodb -pp -smp "+itoa(smp)+" "+cracked name+" GPP";
                                                                   SIF calculation
  system(cmd);
                                                                   from FE results
```


Propagation script: cracked_PROPAG.z7p (1/4)

```
int main()
  init_var();
                                     initializations
 smp
               = 2:
                                     from the GUI settings
 cracked name = "cracked":
                                                       modify those values to do a restart
  start = 1:
               // num of the first cycle computed
 nb_cyc = 100; // total number of cycles to compute
                                                       eg. set start=101 to calculate cycles 101-200
 // Write advance remeshing file, do not change during propag
  write_remesh_new(1):
 err = 0:
 for (cyc=start; cyc<(start+nb_cyc); cyc++) { loop on propagation cycles
    cur_cyc = cyc;
    cout<<endl<<endl<<>> Start of cycle: "<<cyc<<" --- "<endl<endl; cflush();
    if (cvc==1) geof_name = cracked_name +".geo";
    else
                geof_name = cracked_name+"PROPAG"+itoa(cyc-1)+".geo";
    if (!thermal_field)
                                                        mapping of thermal fields on the
        write_thermal_tranfer_inp (cvc-1);
       cmd = "Zrun -fe_transfer transfer_therm":
                                                        new cracked mesh (if defined)
       err = system(cmd);
        if(err) {
          cout<<endl<<"Error when transferring thermal field to mesh: "<<geof_name<<" endl<<endl
          break :
```

SIF computation script: cracked_PROPAG.z7p (2/4)

```
int main()
{ ...
```

```
for (cyc=start; cyc<(start+nb_cyc); cyc++) { loop on propagation cycles
   if (if_transfert * (cyc>1) ) {
                                        transfer SDV + re-equilibrium (if needed)
      write_sdv_tranfer_inp (cyc-1);
     cmd = "Zodb -fe_transfer -s ODB. AutoConvert 1 transfer_sdv";
      err = system(cmd);
                                                  transfer SDV on the new mesh
      if(err) {
        cout<<endl<<"Error when transferring sdv to mesh: "<<geof_name<<" endl<<endl<
         break:
     system ("rm -f REEQUILIBRIUM*");
     err = export_mesh_templated(cyc,1);
      if(err) {
        cout<<endl<<"Failed to generate the REEQUILIBRIUM "<<format<<" input file ":
         break:
                                                  run FE re-equilibrium increment
     cmd = fe_cmd + " -sdv0 REMESHED REEQUILIBRIUM":
     cout << " . reequilibrium at cycle "<<cyc<<" using command: "<<cmd<cendl; cflush();
     err = system(cmd);
      if(err) {
        cout<<endl<<"An error occured during reequilibrium at cvcle: "<<cvc<<" end"<<endl<cendl:
         break:
   cout<cendl<<", generation of "<<format<<" input file for cycle: "<<cvc<<endl<cendl: cflush():
```

```
cout<send<. generation of <<format< input file for cycle: "<<cyc<end<endl; cllush();
if(err) {
cout<sendl<<"Failed to generate the "<<format<" input file at cycle: "<<cyc<endl<endl;
break;
cout
```


SIF computation script: cracked_PROPAG z7p (3/4)

```
int main()
{ ...
  for (cyc=start;cyc<(start+nb_cyc);cyc++) { cop on propagation cycles
     cmd = fe_cmd:
     if (if_transfert * (cyc>1) ) cmd = cmd + " -oj REEQUILIBRIUM ";
    cmd = cmd + " " + cracked_name+" PROPAG"+itoa(cvc):
     cout<<endl<<" . computation of cycle "<<cyc<" using command: "<<cmd<endl<cendl: cflush():
     err = system(cmd);
     if(err) {
        cout<<endl<<"An error occured during FE computation of cvcle: "<<cvc<<" end"<<endl<cendl:
        break:
                                              run FE calulation of next cycle
                                              (note, restart from re-equilibrium if needed)
     gpp_name = cracked_name+"_GPP_PROPAG"+itoa(cvc);
                                                           calculate SIF from FE results
     write_gpp_templated(cyc);
     cout<<endl<<" . computation of SIF at cycle: "<<cyc<<endl<<endl; cflush();
    cmd = "Zodb -s ODB. AutoConvert 1 -pp -smp "+itoa (smp)+" "+gpp_name:
     err = system(cmd);
     if(err) {
        cout<<endl<<"An error occured when computing SIF at cycle: "<<cvc<<" end"<<endl<:endl<:
        break:
```


SIF computation script: cracked_PROPAG z7p (4/4)

```
int main()
{ ...
```

```
for (cyc=start; cyc<(start+nb_cyc); cyc++) { _ loop on propagation cycles
```

```
name = gpp_name+".ZCPOST";
cout<<endl<<" . reading SIF in file: "<<name<<endl; cflush();
err = read_zcpost(name, fronts, Gvalues);
if(err) {
    cout<<endl<<<">Invalid GPP results file: "<<name<<" ... end"<<endl<<endl</endl</tr>

        break;
}
if(fronts.size()==0) {
    cout<<endl<<">cout<<endl<<invalid GPP results file: "<<name<<" ... end"<<endl<<endl</endl</endl</tr>

        break;
}
cout<<endl<<<">cout<endl<<<">cout<endl<<<">endl<<invalid GPP results file: "<<name<<" ... end"<<endl<endl</endl</endl</tr>

        break;
}
cout<<endl<<<">cout<endl<<<">cout<endl<<<">endl<<invalid GPP results file: "<<name<<" ... end"<<endl<endl</endl</endl</tr>

        wite_advance(fronts, Gvalues, max_h);
// Write corresponding advance file
advance (adv_name, fronts );
        calculate advance from propagation law
and write advance (adv_name, fronts );
```

```
// Copy files with standard names needed by drive_crack_remesh
STD.CP(gpp_name+".geo", "TO.REMESH.geo");
STD.CP(adv_name.cracked_name+"_PROPAG.adv");
```

```
// Perform remeshing
do_drive_remesh(max_quality);
```

```
assf.open("REMESHED.geo"); remesh to account for new crack position
if(lassf.ok) {
    coul<<ennew could<</re>remesh to account for new crack position
coul<<ennew could</re>remeshing failed, no REMESHED.geo file ... end'<<ennew classed like in the second s
```


SIF output files

- SIF along the crack front(s) are written is ASCII files FRONT0_SIF, ..., FRONT*n*-1_SIF (for front number *n*)
- those files are used by the SIF tab to draw curves with the gnuplot program
- for each n_p points in the front discretization / line in the file, SIF output is stored by column:

s x y z G T angle KI KIIi KIIIi KIIIi Gii @ N=0 cycles
0.000000e+00 1.077127e-02 0.000000e+00 5.595189e-01 2.172077e+03 0.000000e+00 ...
...
1.664700e-01 -2.168404e-19 1.660996e-01 5.618385e-01 2.217370e+03 0.000000e+00 ...

- 1: curvilinear coordinate s of current point on the front
- 2-4: x, y, z coordinates
- 5: G value
- 6: T (temperature) if anisothermal (otherwise 0.0)

7: angle α if **Outplane propagation** 8: K_I (derived from *G*) when **Compute SIF** 9-11: K_I, K_{II}, K_{III} if **Interaction integral**

PROPAG output files

- the propagation script writes a file named cracked_PROPAG.zck containing the following info (one line for each computed cycle)
- caution, number of detected fronts can change from one cycle to the othermay be difficult to interpret

for a 1 to a computed evelop	# column			
for $c = 1$ to n_c computed cycles n_r : cumulative number of <i>real</i> cycles to reach the required advance				
dn _r : increment number of <i>real</i> cycles				
c : index of current computed cycle				
t : time at end of current computed cycle				
$t = t_0 + c.T$, T cycle period, t_0 initial time entered in (8), (7) (see PROPAG tab)	5			
n _p : number of points stored on each front (field (9) of the PROPAG tab)				
<i>n</i> _f : number of fronts detected during the current <i>computed</i> cycle				
for $f = 1$ to n_f crack fronts for $p = 1$ to n_p stored points on front f				
12 values stored for point p starting at column $c_p = 6 + 12 [n_p (f - 1) + p - 1] + 1$				
(x, y, z) : coordinates of point	сp			
a : cumulative advance , $a = \sum_{i=1}^{c} da(i)$	$c_{ ho}$ + 3			
(u_x, u_y, u_z) : displacement of point p due to advance at cycle c	$c_{p} + 4$			
da : crack advance due to cycle c , $da = \sqrt{u_x^2 + u_y^2 + u_z^2}$	$c_{p} + 7$			
K_{min}, K_{max} : min, max value of SIF during cycle c can be G or K_1 depending on the SIF option selected	<i>c</i> _p + 8			
T_{min} , T_{max} : min, max value of temperature on cycle c (0.0 if no temperature depender	$(c_{p} + 10)$			

