ONERA Fatigue Model

July 19, 2021

Manson-Coffin Model

Basic Tools

- Multiaxial stress amplitude (SEH)
- Multiaxial rainflow

Z-post input commands

- process onera
- process fatigue rainflow
- process manson coffin
- Calibration scripts

Manson-Coffin Model

Basic Tools

- Multiaxial stress amplitude (SEH)
- Multiaxial rainflow

Z-post input commands

- process onera
- process fatigue_rainflow
- process manson_coffin
- Calibration scripts

Experimental database

- F1 : Uniaxial fatigue curves
 Woehler (N_f , σ_a = Δσ/2) curve from symmetric fatigue tests (R = −1)
- F2 : Loading ratio / mean-stress dependence
 Woehler curves with loading ratios R > -1, Haigh diagram
- F3 : Non-linear cumulation dependence of the loading path history on the damage results
- F4 : Temperature Effect
- F5 : Multiaxiality
- F6 : Creep damage
- F7 : Creep-Fatigue interaction

ONERA model (Chaboche)

$$N_f = \frac{1}{(\beta+1)\left[1-\alpha(\sigma_a,\bar{\sigma})\right]} \left[\frac{\sigma_a}{M(\bar{\sigma})}\right]^{-\beta}$$

with $\alpha = 1 - a \frac{\langle \sigma_a - \sigma_l(\bar{\sigma}) \rangle}{\langle \sigma_u - \sigma_{max} \rangle}$

$$N_{f} = \frac{\langle \sigma_{u} - \sigma_{max} \rangle}{a \left(\beta + 1\right) \left\langle \sigma_{a} - \sigma_{l}(\bar{\sigma}) \right\rangle} \left[\frac{\sigma_{a}}{M(\bar{\sigma})} \right]^{-\beta}$$

- Mean stress dependence: $\sigma_l(\bar{\sigma}) = \frac{\sigma_{l_0}}{1 + b_1 \bar{\sigma}}$, $M(\bar{\sigma}) = \frac{M_0}{1 + b_2 \bar{\sigma}}$
- Coefficients : σ_u , σ_{l_0} , β , M_0 , b_1 , b_2

F1: Calibration of symmetric fatigue results (192)

Active coefficients on symmetric fatigue tests ($R_{\sigma} = -1$)

- UTS : σ_u
- fatigue limit : σ_{l_0}
- slope : β
- position along N_f axis : M₀

F1: Calibration of symmetric fatigue results (2/2)

F2: Mean stress dependence (1/2)

b₁: decrease of σ_l depending on mean stress σ̄

$$\sigma_l(\bar{\sigma}) = \frac{\sigma_{l_0}}{1 + b_1 \,\bar{\sigma}}$$

• b₂ : translation to smaller N_f values

$$M(\bar{\sigma}) = \frac{M_0}{1 + b_2 \,\bar{\sigma}}$$

F2: Mean stress dependence (2/2)

F3: Non-linear cumulation (1/4)

• For complex loading paths

- Linear cumulation (Miner's rule) is not conservative
 - sequence effect: mildly damaging cycles have a greater effect if they occur after strongly damaging one
 - cycles with amplitude below the fatigue limit do have an effect if prior fatigue damage occurred
- Needs a multi-axial rainflow procedure (see tools)

F3: Non-linear cumulation (2/4)

Fatigue damage evolution equation:

$$\delta D = \left[1 - (1 - D)^{\beta + 1} \right]^{\alpha(\sigma_{\bar{a}}, \bar{\sigma})} \left[\frac{\sigma_{a}}{M(\bar{\sigma}) (1 - D)} \right]^{\beta} \delta N$$

with $\alpha = 1 - a \frac{\langle \sigma_{a} - \sigma_{l}(\bar{\sigma}) \rangle}{\langle \sigma_{u} - \sigma_{max} \rangle}$

integration of D between 0 and 1

$$N_f = \frac{1}{(\beta+1)[1-\alpha(\sigma_a,\bar{\sigma})]} \left[\frac{\sigma_a}{M(\bar{\sigma})}\right]^{-\beta}$$

F3: Non-linear cumulation (3/4)

integration between D_{i-1} and D_i

• above the fatigue limit: $\sigma^a > \sigma_l(\bar{\sigma})$, $\alpha < 1$

$$\left[1 - (1 - D_i)^{\beta + 1}\right]^{1 - \alpha} - \left[1 - (1 - D_{i-1})^{\beta + 1}\right]^{1 - \alpha} = \frac{1}{N_f(\Delta \sigma, \bar{\sigma}, \sigma_{max})}$$

• below: $\sigma^a \leq \sigma_l(\bar{\sigma})$, $\alpha = 1$

$$\ln\left[\frac{1-(1-D_{i})^{\beta+1}}{1-(1-D_{i-1})^{\beta+1}}\right] = (\beta+1)\left(\frac{\sigma^{a}}{M(\bar{\sigma})}\right)^{\beta}$$

F3: Non-linear cumulation (4/4)

F4: Temperature Effect

Normalized coefficients : σ_{l0}, M, b1, b2

F5: Multiaxiality

Fig. Sines criterion in reversed loading (σ_I means $\sigma_{I0} = \sigma_I(0)$)

F6: Creep damage (1/2)

Rabotnov-Kachanov model:

$$\dot{D_C} = \left(rac{\sigma_{eq}}{A}
ight)^r rac{1}{(1-D_C)^k}$$

where:

$$\sigma_{eq} = (1 - \alpha - \beta) J(\sigma) + \alpha \sigma_{\rho} + \beta \bar{\sigma}$$

and:

- J(σ) Mises invariant of σ
- σ_p first principal stress
- σ
 mean trace of σ
- r, k, A material parameters that depend on temperature

Integration between 0 and 1 yields the critical time t_c for creep initiation:

$$t_{C} = \frac{1}{k+1} \left(\frac{\sigma_{eq}}{A}\right)^{-r}$$

F6: Creep damage (2/2)

Lan Hole ILCO

F7: Creep-Fatigue interaction (1/2)

For each cycle damage goes from D_i to D_f :

• damage increases from D_i to D_c due to creep

$$C = \frac{1}{N_c} = (1 - D_i)^{k+1} - (1 - D_c)^{k+1}$$

• damage increases from D_c to D_f due to fatigue

$$F = \frac{1}{N_f} = \left[1 - (1 - D_f)^{\beta + 1}\right]^{1 - \alpha} - \left[1 - (1 - D_c)^{\beta + 1}\right]^{1 - \alpha}$$

where:

- C increase of damage on one cycle due to pure creep
- F increase of damage on one cycle due to pure fatigue

•
$$\alpha = 1 - a \frac{\langle \sigma_a - \sigma_l(\bar{\sigma}) \rangle}{\langle \sigma_u - \sigma_{max} \rangle}$$

• coefficient a controls the amount of of cumulation non-linearity:

$$0 \le a \le 1$$

- $a \approx 1$: quasi-linear
- $a \approx 0$: strongly non-linear

F7: Creep-Fatigue interaction (2/2)

Lan Participation

Fatigue models summary

Inputs required by the fatigue model:

- From the constitutive model used in FE analysis:
 - cyclic hardening modeling (σ_a)
 - mean stress relaxation modeling $(\bar{\sigma})$
- Dedicated post-processing tools:
 - calculation of the amplitude of a multiaxial stress path
 - multiaxial rainflow algorithm

Basic Tools

- Multiaxial stress amplitude (SEH)
- Multiaxial rainflow

Z-post input commands

- process onera
- process fatigue_rainflow
- process manson_coffin
- Calibration scripts

Experimental database

Manson-Coffin LCF model

- classical strain-based fatigue model
- · doesn't account for non-zero mean stress effects

$$\frac{\Delta\epsilon}{2} = A N_f^{-\alpha} + B N_f^{-\beta}$$
$$\frac{\Delta\epsilon}{2} = \frac{\Delta\epsilon^{p}}{2} + \frac{\Delta\epsilon^{e}}{2} = \frac{\Delta\epsilon^{p}}{2} + \frac{\Delta\sigma}{2E}$$

A, α (plastic), B, β (elastic) fatigue model coefficients, E Young's modulus

A ramberg-osgood equation calibrated from cyclic hardening experimental curves can be used to obtain $\Delta \epsilon^p$ from $\Delta \sigma$ and transform standard S-N curves to ($\Delta \epsilon$, N_f) plots

$$\frac{\Delta\sigma}{2} = K \left(\frac{\Delta\epsilon^{\rho}}{2}\right)^{r}$$

Note that (K, n) are linked to manson coefficients:

$$n = \frac{\beta}{\alpha}$$
, $K = \frac{EB}{A^n}$

Manson-Coffin demo

- calibration of (A, α) on (N_f, ^{Δe^ρ}/₂) points using the *plastic* function item and the *opt_plastic* otimization item
- calibration of (B, β) on (N_f, ^{Δe^θ}/₂) points using the *elastic* function item and the *opt_elastic* otimization item
- check the whole (N_f, Δ_e/2) curve using the *woehler_manson* external simulation item built with Zpost and the strain_control.z7p script
- the *woehler_manson_ramberg* simulation item recalculates the plastic strain from the stress input using the ramberg-osgood equation given in the previous slide
- use the multiplot item to compare manson-coffin with the onera model calibration done previously (see onera R=-1 calibration)

Basic Tools

- Multiaxial stress amplitude (SEH)
- Multiaxial rainflow

Z-post input commands

- process onera
- process fatigue_rainflow
- process manson_coffin
- Calibration scripts

Experimental database

Basic Tools 3

Multiaxial stress amplitude (SEH)

- Multiaxial rainflow
- Z-post input commands
 - process onera
 - process fatigue_rainflow
 - process manson_coffin
 - Calibration scripts

Experimental database

Multiaxial loading path amplitude (1/2)

solve the Smallest Enscribed Hypersphere problem (SEH)

$$\min_{\boldsymbol{X}} \left\{ R(\boldsymbol{X}) = \max_{i} \left\{ J(\boldsymbol{\alpha}^{i} - \boldsymbol{X}) \right\} \right\}$$

- generic geometrical problem with applications in many fields (pattern recognition, protein analysis, political science, ray-tracing ...)
- still, efficient algorithms are fairly recent (Bend Gartner, "Fast and Robust Smallest Enclosing Balls" 1999)

Multiaxial loading path amplitude (2/2)

- Iteratively solve optimization problems SEH(S) on subsets S of P
- At each iteration, solution of *SEH*(*S*) is found by solving a linear system with size the number of points in *S*
- Fast convergence to the solution of SEH(P)

٠

• Farthest of σ_1 is $Fst(\sigma_1) = \sigma_2$

$$\mathbf{Sst}(\mathbf{\sigma}_1) = \mathbf{\sigma}_2$$

• Solve $SEH(\sigma_1, \sigma_2)$: solution is H_1 with center X_1

• Solve $SEH(\sigma_1, \sigma_2, \sigma_3)$: solution is H_2 with center X_2

• Farthest of X_2 is $Fst(X_2) = \sigma_4$

- Solve $SEH(\sigma_1, \sigma_2, \sigma_3, \sigma_4)$: solution is H_3 with center X_3
- all points are in H₃, end

Basic Tools

- Multiaxial stress amplitude (SEH)
- Multiaxial rainflow

Z-post input commands

- process onera
- process fatigue_rainflow
- process manson_coffin
- Calibration scripts

Experimental database

 extract sub-cycles from a complex stress path for (non-)linear damage cumulation

- generalize the 1D rainflow method to multiaxial stress states (6 independent components)
- use the concept of active surface used in some plasticity models (Melnikov, Semenov)

- follow the stress path and recursively builds active surfaces included in one another
- a cycle is detected when the size of the current surface exceeds the previous one

- follow the stress path and recursively builds active surfaces included in one another
- a cycle is detected when the size of the current surface exceeds the previous one

- follow the stress path and recursively builds active surfaces included in one another
- a cycle is detected when the size of the current surface exceeds the previous one

- follow the stress path and recursively builds active surfaces included in one another
- a cycle is detected when the size of the current surface exceeds the previous one

- follow the stress path and recursively builds active surfaces included in one another
- a cycle is detected when the size of the current surface exceeds the previous one

- follow the stress path and recursively builds active surfaces included in one another
- a cycle is detected when the size of the current surface exceeds the previous one

- follow the stress path and recursively builds active surfaces included in one another
- a cycle is detected when the size of the current surface exceeds the previous one

- follow the stress path and recursively builds active surfaces included in one another
- a cycle is detected when the size of the current surface exceeds the previous one

- follow the stress path and recursively builds active surfaces included in one another
- a cycle is detected when the size of the current surface exceeds the previous one

- follow the stress path and recursively builds active surfaces included in one another
- a cycle is detected when the size of the current surface exceeds the previous one

- follow the stress path and recursively builds active surfaces included in one another
- a cycle is detected when the size of the current surface exceeds the previous one

- follow the stress path and recursively builds active surfaces included in one another
- a cycle is detected when the size of the current surface exceeds the previous one

- follow the stress path and recursively builds active surfaces included in one another
- a cycle is detected when the size of the current surface exceeds the previous one

An active surface *s* is defined by:

- Us its closing point created when unloading occurs
- X_s its center

Update of center: $X_s(S_i)$ intersection of the mediatrix of (U_{s-1}, S_i) with (X_{s-1}, U_{s-1})

An active surface *s* is defined by:

- Us its closing point created when unloading occurs
- X_s its center

Update of center: $X_{s}(S_{i+1})$ intersection of the mediatrix of (U_{s-1}, S_{i+1}) with (X_{s-1}, U_{s-1})

Initialization:

- $X_{0} = X_{SEH}$ center of the SEH calculated for the whole loading path
- $U_0 = \mathbf{0}$

 $J(\underline{\sigma}_{m} - \underline{X}_{SEH}) = \max_{i \in \mathcal{D}} \left\{ J(\underline{\sigma}_{i} - \underline{X}_{SEH}) \right\}$

Manson-Coffin Model

Basic Tools

- Multiaxial stress amplitude (SEH)
- Multiaxial rainflow

Z-post input commands

- process onera
- process fatigue_rainflow
- process manson_coffin
- Calibration scripts

Experimental database

Manson-Coffin Model

Basic Tools

- Multiaxial stress amplitude (SEH)
- Multiaxial rainflow

Z-post input commands

- process onera
- process fatigue_rainflow
- process manson_coffin
- Calibration scripts

Experimental database

**process onera

- (multiaxial) rainflow sub-cycles extraction
- (nonlinear) cumulation

```
**output_number ...
**material_file mat
**process onera
 [*cycle beg1-end1/rep1 ... begn-endn/repn]
 [*preload beg1-end1/rep1 ... begn-endn/repn]
  *mode NLC ONERA | LC
  *fatique fatique_rainflow 2
 [*creep creep 2]
 [*reverse 3]
% material file
***post_processing_data
 **process onera
  a 0.1 % (0<a<1)
***return
```


Manson-Coffin Model

Basic Tools

- Multiaxial stress amplitude (SEH)
- Multiaxial rainflow

Z-post input commands

- process onera
- process fatigue_rainflow
- process manson_coffin
- Calibration scripts

Experimental database

**process fatigue_rainflow

• number of cycles to failure according to the ONERA fatigue model

```
**material file mat
**process fatigue_rainflow
 *var sig
 [*mean_stress (standard|variant)]
 [*mode with_a]
 [*normalized coeff]
 [*reverse 3]
% material file
***post_processing_data
**process fatigue_rainflow
   sigma_u 600.0 sigma_l 0.2 M 40.0 beta 2.0
  [ a 0.1 ]
  [ b1 0.1 b2 0.1 sigma_n 550.0 sigma_p 0.01 ]
***return
```


Manson-Coffin Model

Basic Tools

- Multiaxial stress amplitude (SEH)
- Multiaxial rainflow

Z-post input commands

- process onera
- process fatigue_rainflow
- process manson_coffin
- Calibration scripts

5 Experimental database

**process manson_coffin

• number of cycles to failure according to the Manson-Coffin model

```
**material_file mat
**process manson_coffin
  *var sig
% name of the plastic strain tensor (epi) or cyclic_hardening
% to derive epi from sig using a ramberg-osgood equation
  *plastic epi | cyclic_hardening
[ *infinity_is 1.0e+08 ]
[ *full_output ] % additional ee_alt, ep_alt output
% material file
***post_processing_data
 **process manson_coffin
 A 0.01 alpha 0.1
 B 0.01 beta 0.1
 young 200000.
***return
```


Manson-Coffin Model

Basic Tools

- Multiaxial stress amplitude (SEH)
- Multiaxial rainflow

Z-post input commands

- process onera
- process fatigue_rainflow
- oprocess manson_coffin
- Calibration scripts

Experimental database

Stress-controlled script

- Input file (file *stress*):
 - *frequency 20.0
 *temperature 950.0
 *material endo.mat
 *stress 220.0 2000.0 50.0
 *load_factor -1.0
 [*creep]
 [*delay]

Command:

Zrun -zp stress_control.z7p -s ZLanguage.args stress

Output (file stress.out):

```
# nr dsig/2 dsig sig_max sig_min nf nc
3.111629e+06 2.200000e+02 4.400000e+02 2.200000e+02 -2.200000e+02 4.440855e+08 1.284159
...
• Use in SimOpt: • demo • terminal
```


Strain-controlled script

- Input file (file strain):
 - *frequency 20.0
 *temperature 950.0
 *material endo.mat
 *behavior comportement.mat
 *strain 3.e-3 1.e-2 5.e-4
 *load_factor -1.0
 [*creep]
 [*delay]

Command:

Zrun -zp strain_control.z7p -s ZLanguage.args strain

• Output (file strain.out):

1.402353e+06 2.705294e+02 5.410588e+02 -8.940000e-04 6.000000e-03 2.223231e+07 1.588618

Use in SimOpt:
 demo
 termina

Goodman diagram script

• Input file (file goodman):

```
*frequency 1.
*target 1.e7
*temperature 950.0
*material mat.mat
*steady_stress 0.0 700.0 100.0
[*creep]
[*delay]
```

• Command:

Zrun -zp goodman.z7p -s ZLanguage.args goodman

• Output (file goodman.out):

Manson-Coffin Model

Basic Tools

- Multiaxial stress amplitude (SEH)
- Multiaxial rainflow

Z-post input commands

- process onera
- process fatigue_rainflow
- process manson_coffin
- Calibration scripts

5 Experimental database

Calibration experimental database (1/2)

For each temperature spanning the operating temperature range, i.e. at least 4 temperature levels including T_{min} (room temperature) and T_{max} :

- E1: Creep tests with at least 3 points in the (σ, t_f) diagram
- E2: *Pure fatigue* symmetric tests ($R_{\sigma} = -1$)
 - High frequency tests (50 Hz) to uncouple from creep
 - If not possible lower frequency tests (>0.5 Hz)
 - Several frequencies if possible
 - Characterization of the full S-N curve: 3 points in the LCF regime $(N_f < 10^5)$, 2 points in the HCF regime (fatigue limit)

Calibration experimental database (2/2)

- E3: Non symmetric fatigue tests to characterize the mean stress effect
 - A least 1 non symmetric loading ratio ($R\sigma \neq -1$), and ideally 2 to characterize the full Haigh diagram.
 - For each loading ratio, S-N curve as in E2
- E4: Creep-fatigue interaction tests
 - Symmetric $R_{\sigma} = -1$ tests with hold time
 - Typically $T = 220 \ s$ with $T_l = 10 \ s$ and $T_h = 90 \ s$ (check T_h with creep tests in E1)
 - S-N curve in the low cycle regime (at least 3 points)

- E1 and E4 are not needed at low temperature
- E3 can be skipped for some temperatures
- Cyclic tests at $R_{\epsilon} = -1$ available from material behavior tests and performed up to failure can be used to build the S-N curves

