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3D plasticity and viscoplasticity

» Strain partition

g=»N:¢
"=(T-T)a
o Criterion
f
o Flow rule
ép _
» Hardening rule _
Y, =
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Formulation of viscoplastic constitutive eqt)"aﬁ%g

The easiest way of writing a viscoplastic model is to define a
viscoplastic potential, , depending on stress and hardening
variables. A standard model will then be characterized using
the yield function f to define ®, and deriving viscoplastic strain
rate and hardening rate from ¢, ¢ := ®(f(g, Y))).

Viscoplastic strain rate:

0P
o 9
€ oo
State variable rate:
q - 9%
= oy,

Introducing v = oo

7 , n=0f/0g , and M, = 0f/dY,
QVP: VINT OIZ[:—\./M/

.
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Examples of simple viscoplastic models ..

» Norton rule and von Mises criterion f = J(g), and :

o_ K (J2) T
n+1 K

o oJ 0s _
dg 9s 0g 2J = 37
The elastic domain is reduced to one point.
« Bingham model:

-setl:

-
-

Z-set group Z-mat training



From viscoplasticity to plasticity

a. Viscoplastic potential b. Plastic pseudo-potential as a
limit case

Viscoplasticity = after the choice of the function defining
viscous effect, v is known
Plasticity = X to be defined from the consistency condition

- -set
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Formulation of the plastic constitutive T qua

- elastic domain  : f(ag,Y;) <0 (e= l:\—1 . o)

- elastic unloading : f(g,Y;) =0 and f(g,Y)) <0 (¢ =A" T g)

- plastic flow :f(g,Y)=0 and f(g,Y))=0(¢=A" T +€P)
&= ..
Yi=..

s5etins
Z-set group Z-mat training Z




criterion .

f(g) = J(g) — o, (no hardening)

n—= 3f Q — 3_J - % where : ni = ﬂ %
~ dg g 0s  Og T Os Oy
Doy Sik 0ji 3 0ij Okl
o _3sj . . _3s
nj=5~ where: n=3s5

Pure tension along direction 1 :

oy (10 0 10 0
s=5 (0 -12 o0 s J=lo|; n=| 0 —1/2 0 sign(o)
0o o0 -—1/2 0o o0 -1)2

P et
-
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e )
Prandtl-Reuss law (1) G »**rfj'!‘@@

f(g,R) = J(g) — oy — R(p)

- Hardening curve for one-dimensional monotonic loading:
o =0y + R(p).

- Plastic modulus: H = dR/deP = dR/dp

For pure tension:

ny = sign(a) s Moo = N33 = (—1/2)”11
P =P =sign(o)\ | oo =éaz=(—1/2)eP
p =’ = A

For general 3D case:
. : ) 2 1/2
gngpzng:g:gx thenp:<3§p:§p>

set
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Prandtl-Reuss law (2)

- Use of the consistency condition:

of . 0f; . . _
%'nga_FfR_o writes: n:o—-Hp=0 and:

. n:oc . _3s

A= o with n=3s5

: n:g
P = = = i
€=An="==n
For pure tension:

nq =sign(c) , n:g=dosign(c) and: A=p=é",

mqo o

hat: ¢P = = —

so that € H N1 H

P
-set
-
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Prager rule (1)

flg.X)=Jg - X)—oy with Jig—X)=((3/2)(s-X):(s-X)*
One-dimensional loading : Tensile curve modeled by:
o —X|—0,=0 o= X(’) + oy
Since X is proportional to €, its components for one-dimensional loading are
Xi1, Xo2 = Xaz = —(1/2) X4
Let us define:
X = (2/3)He?
For one-dimensional loading, assume:
X = (3/2)X11 = He,
then

W
[
x
Il

diag ((2/3)0 — Xi1, —(1/3)0 + X1 /2, id)
diag ((2/3)(c — X), —(1/3)(c — X), id))

Jg —X) =0~ X|

- -set
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Prager rule (2) AT RS
Consistency condition:
of . of e v . 3 s-X
@.nga.)N(—Othen. n:g—n:X=0 with: Q_EJ(‘I—X)

n:c;r:g:);(:gng}\g:H)\ sothat: A= (n:q)/H

n:
H

Q-

f=An==">n

- Same formal expression than for isotropic hardening, nevertheless

n is different;

- Under one-dimensional loading, o = 011, with X = (3/2) X1 :
lo—X| =0, , o=X=He¢

.
-set
3
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Summary in plasticity and viscoplasticity,. »**q{(:i(&;\)

For both cases:
elastic domain defined by the load function f < 0;
isotropic and kinematic hardenings
For plastic materials:
plastic flow defined by the consistency condition, f = 0, f=0;
plastic flow is time independent :
deP = g(o,...)do
For viscoplastic materials:
viscoplastic flow is defined by the value of the overstress f > 0;
possible hardening on the viscous stress;
viscoplastic flow if time dependent :
de”®? = g(o,...)dt

-set
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State variables m

Z-set group

Isotropic hardening depend on p, the accumulated plastic
strain defined as :
= [é?]

Linear kinematic hardening depend on , the present
plastic strain

Nonlinear kinematic hardening depend on « , defined as :
= (1— D asign(ef)) P

asymptotic value of « = 1/D

.
- -set
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Isotropic/Kinematic hardening 4 **“g‘!(i@; \
s ‘”/,;'JJ 3 5 |

Non-linear isotropic hardening
R=R0O+Q (1 — e ?p)
saturation rate: b , saturation hardening: Q

Non-linear kinematic hardening
X=5Ca , a=ph-38X
saturation rate: D , saturation hardening: %

» demo » reset » open terminal
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Cyclic plasticity and hardening models

» kinematic hardening : shape of the stress-strain loops

» isotropic hardening :
cyclic hardening (Q > 0) or softening (Q < 0)

ssetites
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Z-set group

stress (MPa)

100|

-100

30 40 50 60 70
time (s)

Z-mat training

Q= Qo+ (Qsat — Qo) exp(—249)
R=R+Q(1—-e")

n= %(ivi —2)/J(evi — 2)
n=n:m

a=nA

z=2(n:ew)n”

~
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Multi-kinematic models wdhe %‘»L

flg)=J(e-Y X)-R

smooth out the transition from linear to nonlinear behavior
modelling of short and long-range hardening mechanisms

for model calibration :

e fix D values to scan the saturation rates :
D1=200, D2=4D1 , D3=4D2 efc..
e find the C values using optimization

» demo » reset » open terminal

.
- -set
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purpose : allow a change in shape of the stres
when temperature changes during anisothermal

applications

oM T = 600
(1P C1 = 200000, D; = 1000

T =650
Cp = 20000, D, = 100

0y = 100MPa

wrong results may ﬁappen when D depends on temperature
o (MPa)

anisothermal strain-controlled loading

T =650C: temperature loading

T=600C
strain loading €

time

Z-set group

yield function with kinematic hardening:
flg) = Jg—X) —oy

back-stress:

& =p(n-

C, D coefficients depending on temperature

D(T) &)

X=2C(T)g

should have ¢ < 300 MPa

of 300 was expected!

. anlsmherma loading :
0 = 420 MPawhen amaximum

raining

o=
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Patch for D temperature dependency (1/2“‘ i
o add a constraint (J(g) — @) < ﬁ A A

» modified evolution equation for o

1 dD(T) 1

A . 1
a =p (Q_D(T) Q,‘) - <J(Q‘)_ D(T)> <J(Qf) a7 D2> @

o (MPa)

300 frooe

v *+xxbehavior gen_evp
xxpotential gen_evp ep
xkinematic nonlinear

aniso_correction
i C temperature
G _ % _200MPa: " 200000.0 600.0

200

150 |}

D1~ D2 20000.0 650.0
. D temperature
1000 - I X, . 1000.0 600.0
: 100.0 650.0
oy =100 MPa

**xxreturn

€p

Z-set group Z-mat training
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200

50

150 |-

..T=600.

aniso results stays on the *+xxbehavior gen_evp

T=650 curve during ..
cooling at 600 +xxpotential gen_evp ep
- *kinematic nonlinear
S 2 - 200MPa C temperature
R 200000.0 600.0
0.0 650.0
D 1000.0
Yoo +kinematic nonlinear
C temperature
oy = 100 MPa 0.0 600.0
B 20000.0 650.0
D 100.0 ... xxxreturn

Z-set group Z-mat training

€

» more refined patch than the previous aniso_correction one
» avoid any spurious relaxation during undercooling at 600 C
» difficulties if several X are needed to calibrate isothermal loops

»demo  »reset  »openterminal
P set =
D



« linear kinematic hardening : non-zero mean-stress

« non-linear kinematic hardening : mean-stress relaxation to
zero

o linear + non-linear : mean-stress relaxation to non-zero
value

,?-set o,
- —
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Asymmetric stress-controlled cyclic‘tegs’t‘

« linear kinematic hardening : no ratcheting

« non-linear kinematic hardening :
possible ratcheting with a constant strain increase

« linear + non-linear : arrest of the ratcheting effect

,?-set o,
- —
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Non-linear kinematic with threshold

o (MPa) w = 05
250 ; T T T T >
200 S K = 3 Cg
]mcrois%\nt
150 - 1 3D
&= |n-5-9: N] p
100 IX)>wE X ] 26 =
D 11
ol 1 o _ /DIX) —wO\ 1
x 1 - w (D J()N()) X
0 0 0.005 0.01 0.015 0.02 0.025 0.03
C

» switches from linear to nonlinear when J(X) > 3

« refined modelling of mean-stress relaxation and ratcheting
effects

» several objects may be needed to avoid slope
discontinuities

Z-set group Z-mat training —
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Viscoplasticity

Strain partition :

€
. . v T of
Normality rule : ¢ = A 75
n
Norton flow law : )\ = <f(,g)>>

« strain rate sensitivity

» creep
o stress relaxation

»demo  »reset  »openterminal
; =Setiie
o

Z-set group Z-mat training



Norton vs Hyperbolic sine

Hyperbolic sine function often used for more accurate correlation of strain rate
sensitivity over a wide range of inelastic strain rates

p:

7“> - Norton power low
i ] p= [ (< > )] - Hyperbolic law

stress (MPa)

7

v same response for both models for low plastic
w deformation rates

107 10°  10°  10° 0° 107
plastic strain rate (1/5)

Coefficient ¢q defines strain rate at which hyperbolic law deviates from the
classical norton response

In order to adjust the coefficient K}, for o, — 0 a simple rule can be applied:

1
suppose n=n,=n and m=1, then K, = ¢J K»
» demo » reset » open terminal

=
- -set
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Aging effects

time-dependent microstructure changes (unstable materials)

activated at high temperature

may produce softening (eg. aluminium alloys) or hardening (some steels)
no dependency on prior strain deformation

internal variable evolution accounting
for aging effects

P ax(T)—a
(T)

assymptotic aging a.. and saturation

rate 7 depending on temperature

> , 0<a<as

influence of a on isotropic hardening
(initial yield stress oy)
oy = RO + RO* (1 —a)
influence of a on kinematic hardening
2
X=3C(-aa

» demo > reset » open terminal

Z-set group

Z-mat training

*x+xbehavior gen_evp
*xpotential gen_evp

*kinematic nonlinear
% C == (l.0-factorxage) *C
C aging_effects param:age factor:1.0
10000.0
D 100.
«isotropic isotropic_sum
*-—constant
RO 100.0
*—isotropic_aging
RO_star 200.0
a_inf 0.8
tau 5000.0

*x+xreturn

-set
a



Chatelier effect)

» Effect is observed for many metallic materials in some temperature and strain
rate domains

» Associated with dynamic strain aging (DSA)

g
o
3 = g
H // - :
/
@ /'/// @
i e R RN e = = =
strain (mm/mm) log(plastic strain rate (1/s))
Inverse strain rate sensitivity Evolutions with plastic strain rate of the
normal viscous stress
7 3 t;
H:RI'SO"’_RQ Ra:P1 1—6 0 ta:1_aWp

= 2 s5etins
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» Influence of cyclic hardening on the viscous part of the stress

g

s s 8 ° 35 g 3 =g°

(ed) ssons

g

g 8 8 ° 8 8 g 8

- T
(edIn) ssa11s

2000
time (s)

2000
time (s)

£€=0

Z =Setiie

Z-mat training
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Static Strain Aging

» Same constitutive model for both SSA and DSA

» Possible application: simulation of the peak in the stress-strain curve around the
yield strength

000099

5 ooee™™ R:Riso+Ra 5
E / Ra = P1 <1 —e_<%> )
” // fo=1- 12

0.1 qZ 0.003
strain (mm/mm)

ssetites
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Yield surface evolutions

» Z-sim option to draw yield surface evolutions

****simulate
*xxtest creep
*xload *segment 5
time sigll sig22 sig33 sigl2
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
1.000000e-03 0.000000e+00 2.000000e+02 0.000000e+00 0.000000e+00
1.000000e+03 0.000000e+00 2.000000e+02 0.000000e+00 0.000000e+00
*xmodel
*xyield_surface yield_11_22_0
~degrees 5.0
xfactor 1000.0
xfind_offset
xcomponent sigll sig22
*time 1000.0
*xxxreturn

=5etii
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Kinematic hardening with static recovet |

» time-dependent recovery of the hardening at high
temperature

.:)'\
Q M

S04 <J<x>)m

"ok 2 U

« constant strain rate during creep tests due to a balance of
defect creations (hardening) and destruction (recovery)

?-set o,
o
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Multi potential models

Strain partition : € = € + () + Y€

« refined modelling of a wide range of strain rates associated
with different deformation mechanisms

« each potential can have its own flow law and hardening
objects

ini -set!:
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Interaction between potentials % TR

- \91

ot

S )
RN Y
as ]

Example: Two inelastic deformations, one plastic, the other one

viscoplastic

Strain partition :

Hardening :

€ =€ + e + ¢

P(g) = J(g—XP) — R°
f(g) = J(o—X*) - R
XP = 5Caf + Cpa”
&P = p[n? - 52 X°]

X' =%Ca" + Cpa®
a’ = A[n" 38 X']

alternative way to model inverse strain rate effect :
Portevin-Le Chatelier effect in austenitic stainless steels

» demo > reset

Z-set group

» open terminal

- -set
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2M1C model o <§§~

2 mechanisms, 1 criterion

allows to control the amount of ratcheting

Criterion : f = \/J(g—)wﬁ)2 + J(g—)w(g)z - R
Kinematic hardening with coupling term :

X =
X> =

(Ci1 a1 + Ciz az)
(C2az + Ci2 o)

\ 3D;
A (L"i ~ 20 X;)

OINWINY

Kinematic evolution : ¢&; =
- X

with: o= 3 -2
RGP 9]
» demo » reset » open terminal

-set
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Addition of damage objects

Example: Viscoplastic damage (stage lll creep)

Effectivestress : o = (1 -d) De:€e) = (1 —d) gerr

Damage evolution using the Hayhurst function :
r
¢ = <—X(j{)> (1—d)*
x(g) = ao + Btralg) + (1 —a—pB)J

?-set 2
-
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Cast Iron behavior

Ingredients of the cast iron model:

o Modified criterion:

1 1
fr= (L4 (Re— R)Trg)® — (RRe)?
fc = J — Rc
150
_ 200
5 <
200
—a00
600
%950 200 -150 -100 -0 0 50 100 150 ~0.010 ~0.005 0.000 0,005 0010
7y (MPa) e (mm)

=setifza
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Single-crystal model

O

Plastic deformation: ¢’ = >, 4" m’
for each slip system r : orientation tensor m” , slip ~"

Resolved shearstress : 7" =g :m’
n
Viscoplastic flow : Vo= <f?> , AT = V' sign(r" — x)
Criterion : fro=1r=x —r—m
Kinematic hardening : x'=Cd

o = (sign(v"—x") — Da") V"

Isotropic hardening : = Q3% ¢ hs (1—exp(—bv?))
hrs :interaction matrix

» demo » reset » open terminal

-set
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Polycrystal model (ﬁ% \
el AN <Y

Micro-mechanical crystallographic model

G grain phases defined by their volume fraction 7, and
orientation

Localization rule for stress a4 in each grain :

S (68) — @g]

i€eG

g =% +C

Evolution of inter-granular hardening tensors 3 :
B, =& — DBl
Homogenization of plastic strains : EP = Yoo éh
Single-crystal constitutive equations for each phase g
» demo » reset » open terminal

-set
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Viscoelastic generalized Maxwell model @ 27

S

Strain partition : € = € + (") + €®

G

Viscoelastic deformation is described by the Maxwell mC]
model

)2 )
T ¢ 7

ny

The model defines the stress, g, to the strain € by the following relation:

t t
ag):/o 2G(t_T)Dev(g)(T)dT+1/o K(t— ) Tr(&)dr

The terms G and K are relaxation functions defined by Prony series:

i=nq

G(7) = Goo — (Goo — Go)V1(7), Wi(7) = E ~iexp(—7/7i)
i=1
i=ng

K(7) = Koo — (Koo — Ko)W2(7), Wa(r) = > ~viexp(—7/7)
pa

Z-set group Z-mat training
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T ¢ 7

(1)
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)
Viscoelastic generalized Maxwell model (2/2) ‘ i

Coefficients: -
Ky and K, - instantaneous and long term bulk moduli ;
Gy and G - instantaneous and long term shear moduli ;
- characteristic timescale of the i-th chain (Maxwell
time) ;
- shear or volumic relaxation modulus ratio of the /-th
chain .
Features:
strain rate sensitivity
shear and volumic viscous effects
creep
elastic stress relaxation with a spread of relaxation times
Applications:
polymers, metals at high temperature

» demo » reset » open terminal

.
-set
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