<POTENTIAL> suvic#
Description#
This is the SUVIC model which applies well to ductile rock material such as sodium chloride materials over long term creep loading. There are isotropic and kinematic hardenings with static recovery, as well as evolution in the creep law and changing saturation values for the hardening variables.
(467)#\[\dot{\lambda} = A\left<\frac{f(\ten \sigma-\ten B) - R - R_0}{K + K_0}\right>^n\]
(468)#\[\dot{\boldsymbol{\varepsilon}}_v = \dot{\lambda}\ten n \hskip1cm \ten n = \pder{f}{\ten \sigma}\]
(469)#\[\dot{\boldsymbol{\alpha}}_i = \dot{\lambda} \left[ \ten n - \frac{\ten B_i}{B_i'} \right] -
\left< \frac{J(\ten B_i)-B_i''}{M_{B_i}} \right>^q\]
(470)#\[\dot{r} = \dot{\lambda} \left[ 1 - \frac{R}{R'} \right] -
\left< \frac{\|R\|-R''}{M_{R}} \right>^p\]
(471)#\[\dot{k} = \dot{\lambda} \left[ 1 - \frac{K}{K'} \right] -
\left< \frac{\|K\|-K''}{M_{K}} \right>^p\]
(472)#\[\begin{split}\begin{aligned}
& \ten B_i = A_{1_i} \ten \alpha_i \qquad M_i = C(A_{1_i}/A_{2_i})^{1/q} \\
& R = A_{3}r \qquad \quad M_r = C(A_3/A_4)^{1/p} \\
& K = A_{5}k \qquad \quad M_k = C(A_5/A_6)^{1/u} \\
& B_i' = B_{i0}'\left[\ln(\dot{\lambda}/v_0)\right]^m \\
& R' = R_{0}'\left[\ln(\dot{\lambda}/v_0)\right]^m \\
& K' = \left[ J(\ten \sigma)\ln(\dot{\lambda}/v_0) -B' -R' \right](\dot{\lambda}/A)^{-1/n}
\end{aligned}\end{split}\]
Example#
***behavior gen_evp
**elasticity isotropic
young 18900.
poisson 0.25
**potential salt ev
*criterion mises
*flow norton_k_variable
n 4.0
*kinematic nonlinear % short range
A1 6400.0
Bp equivalence Bpa0v
*kinematic nonlinear % long range
A1 40.0
Bp = Bpa1v
*isotropic non_linear_recovery
A 1800.0
R0 0.0
Rp = Rp
*K non_linear_recovery
R0 0.04
A 260.0
Rp = Kp
*parameters
A 6.00e-7
N 4.0 % must be duplicated!
vdot0 1.e-13
sig0 4.63
R0 1.38
B01 0.83
B02 1.25
m 0.81
***return