<CONDUCTIVITY>#
Description#
Thermal conductivity is available in isotropic and anisotropic forms. Conductivity acts much like the elasticity matrix does in mechanical problems, except the thermal behavior accounts for direct coefficient variations with respect to the temperature.
\[\vect{q} = \ten k \nabla T\]
Syntax#
**conductivity type
\(~\,~\,\) …
The following forms are available:
isotropic- \[\begin{split}\ten k = \left[\begin{matrix} {\tt k} & 0 & 0 \\ 0 & {\tt k} & 0 \\ 0 & 0 & {\tt k} \\ \end{matrix} \right]\end{split}\]
where
kis the only coefficient. anisotropic- \[\begin{split}\ten k = \left[\begin{matrix} {\tt k1} & 0 & 0 \\ 0 & {\tt k2} & 0 \\ 0 & 0 & {\tt k3} \\ \end{matrix} \right]\end{split}\]
where the coefficients
k1,k2, andk3are to be entered.