bodner_partom#

Description#

This behavior is an implementation of the classical model due to Bodner and Partom. The model is viscoplastic and incorporates scalar and tensorial hardening variables. There is no initial yield radius thereby allowing inelastic deformation at very low stress levels over long periods of time. The state and evolution equations are the following:

(276)#\[Z = Z_i + Z_0 + \ten \beta:\ten u \hskip1cm \ten u = \dfrac{\ten\sigma}{\sqrt{\ten \sigma:\ten \sigma}}\]
(277)#\[D_{p_2} = D_0^2 \exp\left[ -\left(\frac{Z^2}{3J_2}\right)^n \right]\]
(278)#\[\dot{\ten \varepsilon}_{vi} = \sqrt{\lambda_2}\ten S \hskip1cm \ten S = \tenf U:\ten \sigma \hskip1cm \lambda_2 = D_{p_2}/J_2 \hskip1cm J_2 = \dfrac{1}{2}\ten S:\ten S\]
(279)#\[W_p = \ten \sigma:\dot{\ten \varepsilon}_{vi} = \sqrt{\lambda_2}\ten S:\ten \sigma\]
(280)#\[\begin{split}\begin{aligned} \dot{\ten{\varepsilon}}_{el} &= \dot{\boldsymbol{\varepsilon}}_{to} - \dot{\ten \varepsilon}_{vi} \\ \dot{Z}_i &= m_1(Z_1 - Z_i - Z_0 ) W_p \\ \dot{\ten \beta}&= m_2(Z_3 \ten u - \ten \beta )W_p \\ \end{aligned}\end{split}\]

Syntax#

***behavior bodner_partom [ **thermal_strain <THERMAL_STRAIN> ] [ **elasticity <ELASTICITY> ] \(~\,\) **model_coef

Coefficient names are n, Z0, Z2, D0, Z1, Z3, m1, m2, A1, A2, r1, r2

Stored Variables

prefix

size

description

default

eto

T-2

total strain

yes

sig

T-2

Cauchy stress

yes

evi

T-2

inelastic strain tensor

yes

Zi

S

isotropic drag stress

yes

beta

T-2

kinematic variable

yes

p

S

inelastic strain equivalent

yes

Ztot

S

Sum of \(Z\) parts

yes

Example#

The following is a simple example of the Bodner-partom material using room temperature coefs for HASTELLOY-X as given by Rowley and Thornton [M5].

 ***behavior bodner_partom
  **elasticity isotropic
    young  196.6e3
    poisson 0.33
  **model_coef
    n   1.0
    Z0  1860.
    Z2  1860.
    D0  10000.0
    Z1  2390.
    Z3  603.
    m1  0.139
    m2  3.49
    A1  1.0e-9
    A2  1.0e-9
    r1  1.
    r2  1.
***return