BETA_TFA#
Description#
This object class is used for specifying the evolution laws of \(\ten{\beta}\) variable. This variable has the dimension of a strain and is to be considered as an internal variable in each sub-volume.
The following types of evolution laws of \(\ten{\beta}\) variable may be chosen:
CODE |
DESCRIPTION |
---|---|
beta_d |
\(\displaystyle{\boldsymbol{\dot \beta_s} = \boldsymbol{\dot \epsilon^p_s} - D_s \dot p_s \boldsymbol{\beta_s} - \frac{\det(\boldsymbol{\dot \epsilon^p_s}) \,\,\boldsymbol{P}}{\dot p_s^2} \boldsymbol{I}}\) |
beta_matrix |
\(\displaystyle{\boldsymbol{\dot \beta_s} = \boldsymbol{\dot \epsilon^p_s} - D_s \dot p_s \boldsymbol{S}_s:\boldsymbol{\beta_s}}\) |
kroner |
\(\displaystyle{\boldsymbol{\dot \beta_s} = \boldsymbol{\dot \epsilon^p_s}}\) |
delta |
\(\displaystyle{\boldsymbol{\dot \beta_s} = \boldsymbol{\dot \epsilon^p_s} - D \dot p_s (\boldsymbol{\beta_s} - \delta \boldsymbol{\epsilon^p_s}) - \frac{\det(\boldsymbol{\dot \epsilon^p_s})\,\, \boldsymbol{P}}{\dot p_s^2} \boldsymbol{I}}\) |
free |
\(\displaystyle{\boldsymbol{\dot \beta_s} = \boldsymbol{\dot \epsilon^p_s} - C_b \dot p_s \boldsymbol{\beta_s} + \frac{\det(\boldsymbol{\dot \epsilon^p_s}) C_{e3}}{\dot p_s^2} \boldsymbol{I}}\) |
where \(\det(A)\) represents the determinant of a matrix A. \(\boldsymbol{P}\) is the extreme pressure and \(\dot p_s\) is the rate of accumulated plastic strain \(\displaystyle{\dot p_s = \sqrt{\frac{2}{3}(\boldsymbol{\dot \epsilon^p_s}:\boldsymbol{\dot \epsilon^p_s)}}}\).
Syntax#
The syntax for a BETA\(\_\)TFA object requires that a name of the sub-volume must be given, followed by the type and whatever coefficients are allowed for the corresponding model.
- beta_d
**beta
namebeta_d
\(~\,~\,\)D
<double> \(~\,\) [pressure
<double> ]
- beta_matrix
**beta
namebeta_matrix
double \(~\,~\,\)poisson
<double> \(~\,~\,\)ratio
<double>
- kroner
**beta
namekroner
- delta
**beta
namedelta
\(~\,~\,\)D
<double> \(~\,~\,\)delta
<double> \(~\,~\,\) [pressure
<double> ]
- free
**beta
namefree
\(~\,~\,\)Ce3
<double> \(~\,~\,\)Cb
<double>