matmod#
Description#
This model is an implementation of the MATMOD equations due to Miller [M6]. The model accounts for isotropic/kinematic hardening and presents a particular form of temperature dependence in the material coefficients.
(287)#\[\dot{\ten{\varepsilon}}_{in} = B\theta^\prime\left\{\sinh\left[ A f_1
\left(\frac{J(\ten \sigma-\ten R)}{D}\right)^{3/2}
\right]\right\}^n\frac{3}{2}\frac{\bf s-\ten R}{J(\ten \sigma-\ten R)}\]
(288)#\[\begin{split}\begin{aligned}
&\theta^\prime= \exp\left\{ \left[ -\frac{Q}{0.6kT_m}\right]
\left[ \ln\left(\frac{0.6T_m}{T}\right)+1\right]
\right\}\hskip1cm
\hbox{for $T\leq 0.6T_m$} \\
&\theta^\prime= \exp-Q/kT)
\hskip1cm
\hbox{for $T\geq 0.6T_m$} \\
\end{aligned}\end{split}\]
(289)#\[\dot{\ten R} = H_1 (\dot{\ten{\varepsilon}}_{in} - B\theta^\prime[\sinh(A_1\vert\ten R\vert)]^n)
\frac{\ten R}{\vert\ten R\vert}\]
(290)#\[\dot{D} = H_2 \vert \dot{\ten{\varepsilon}}_{in}\vert\left[ C_2 + \vert\ten R\vert-(A_2/A_1)D^3\right] -
H_2 C_2 B\theta^\prime\left[ \sinh(A_2 D^3)\right]^n\]
Syntax#
***behavior matmod
[ **thermal_strain
<THERMAL_STRAIN> ]
[ **elasticity
<ELASTICITY> ]
\(~\,\) **model_coef
Stored Variables
prefix |
size |
description |
default |
---|---|---|---|
|
T-2 |
total strain |
yes |
|
T-2 |
Cauchy stress |
yes |
|
T-2 |
inelastic strain tensor |
yes |
|
S |
isotropic drag stress |
yes |
|
T-2 |
kinematic rest stress |
yes |
Example#
The following is a simple example of the MATMOD material corresponding to the material in Miller’s original paper:
%
% As given by Mill76 (Tests matmod#)
%
***behavior matmod
**elasticity
young temperature
1.93e5 23.0
1.55e5 538.0
poisson 0.3
***model_coef
A1 0.108 % MPa^-1
A2 2.27e-7 % MPa^-1
B 1.e15 % sec^-1
C2 0.69 % MPa
H1 1930 % MPa
H2 100 %
n 5.8 %
Q 91000.0 % cal/mol
Tm 1800.0 % Degree K
***return