Imbricated finite element method (FE\(^2\) model)#
This model has been developed during the past few years [Feyel] in order to directly replace the constitutive equations (at the structural scale). At each Gauss point of the structural scale, the constitutive equations are thus replaced by an other finite element computation at the composite scale. The figure bellow shows the schematic principle of the FE\(^2\) approach :
finite element computation at the structural scale which delivers the macroscopic strain \(\boldsymbol{E}\),
localization which determines the local strain field at the fiber/matrix scale \(\boldsymbol{\epsilon}\),
a finite element computation which delivers the local stress field \(\boldsymbol{\sigma}\),
homogenization of \(\boldsymbol{\sigma}\) to compute the macroscopic stress \(\boldsymbol{\Sigma}\).
Any localization/homogenization scheme can be used, but in the specific SiC/Ti case, the regular position of the fiber into the matrix allows to use the classical periodic homogenization.
Localization/homogenisation scheme#
Description#
Two files are necessary, the first one periodic.mat
is defined in
the **material
section of the macroscopic problem and the second one
file_local
is defined in the **local
section of the
periodic.mat
file.
Syntax#
This is the syntax of the periodic.mat
file.
***behavior mmc_fe2
**local periodic
[ **file
file_name ]
[ **update_tg_matrix
tg_matrix_option ]
[ **import
name name_dest ]
where file_name
is the name of the file where the localization
options are indicated. The import
option specifies which macroscopic
parameters must imported in the microscopic problem. name is the name
of the parameter in the macroscopic problem and name_dest is its name
in the microscopic problem.
Syntax#
This is the syntax of the **file file_name
file.
**convergence
ctype
**reinit
itype
**maxiter
maxiter
**ratio
ratio
**local_problem
local_name
**localization
ltype
\(~\,\) *impose_elset_dof
elset_name
\(~\,\) *macro_E_size
Esize
\(~\,\) **homogeneisation
htype
\(~\,\) *macro_flux_size
Fsize
**convergence
give the convergence type :
absolu
,automatic
**reinit
(see
***sequence
)**maxiter
maximum number of iteration to solve the microproblem.
**ratio
specify the maximum global ratio for the convergence. method of localisation form the macroscopic scale to the microscopic scale. Two types :
to_periodic_plane_strain
orto_general_periodic_plane_strain
.*macro_E_size
size of the macroscopic strain tensor (4 in 2D or 6 in 3D).**homogeneisation
method of homogenisation. Two types :
classic_2d
orclassic_3d
*macro_flux_size
size of the macroscopic stress tensor.
Example of a FE\(^2\) test#
Macroscopic problem#
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This is the macroscopic problem %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
****calcul
***mesh **predefined rve2d
***resolution newton
**sequence 1
*time 0.5
*increment 1O
*ratio .1
*algorithm p1p2p3
*iteration 100
***bc
**impose_element_dof 1 E11 1. time
***material *file periodic.mat
***output
**test
*precision 5
*small 1.e-8
*gauss_var 1 1 eto11 eto22 eto33 eto12 sig11 sig22 sig33 sig12
****return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This is the periodic.mat file %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
***behavior mmc_fe2
**local periodic
**file file_local
**update_tg_matrix ask_localization
***return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This is the file_local file %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
**convergence absolu
**reinit p1p2p3
**maxiter 1000
**ratio .005
**local_problem micro
**localisation to_general_periodic_plane_strain
*impose_elset_dof ALL_ELEMENT
*macro_E_size 4
**homogeneisation classic_2d
*macro_flux_size 4
***return
Microscopic problem#
Description#
This part is the description of the microscopic problem. No comment, see
****calcul
.
****calcul
***mesh
**elset ALL_ELEMENT periodic_general_plane_strain
periodic_info total_displacement_field
***linear_solver frontal
***resolution
**sequence
*ratio absolu 0.001
*time 1.
*increment 30
*algorithm eeeeee
***bc
**impose_nodal_dof
centre U1 0.
centre U2 0.
ALL_NODE U3 0.
***equation
**mpc2 gauche U1 droite U1
**mpc2 gauche U2 droite U2
**mpc2 haut U1 bas U1
**mpc2 haut U2 bas U2
**mpc2 bg U1 bd U1
**mpc2 bg U2 bd U2
**mpc2 bg U1 hg U1
**mpc2 bg U2 hg U2
**mpc2 bg U1 hd U1
**mpc2 bg U2 hd U2
***material
**elset fibre
*file fibre
**elset matrice
*file matrix
***output
**test
*precision 5
*small 1.e-8
*gauss_var 1 1 eto11 eto22 eto33 eto12 sig11 sig22 sig33 sig12
****return