<COEFFICIENT_MATRIX>#
Description#
This object is used to enter coefficients for a desired form of 4th
order coefficient matrix. The use of these matrices is often as an
elasticity matrix, so we sometimes refer to the object as
ELASTICITY
.
Syntax#
These objects take a list of coefficient declarations after the type keyword is given. There are no explicit restrictions on the types of coefficients or their dependencies. The different types (keywords) available are the following:
CODE |
DESCRIPTION |
---|---|
|
1 or dim coefficients |
|
2 coefficients |
|
3 coefficients |
|
5 coefficients |
|
9 coefficients |
|
21 coefficients |
The default type depends on its application. For elasticity objects this
is isotropic
. The anisotropic
model represents the most general
elasticity model. Coefficient names follow the same convention to
describe components of the coefficient matrix. This sets the coefficient
name for a component \(C_{ijkl}\) to Cijkl
. For example, a
component \(y_{1212}\) is named y1212
.
Whenusing elasticity objects, special care has to be taken with respect to the nomenclature of the components. When representing a tensor of elasticity in 6\(\times\)6 form, the Voigt convention is assumed, but with one important difference: the order of storage is
instead of the usual
For instance, a Voigt coefficient \(c_{66}\) becomes c44
or
y1212
in Zmat/Zebulon.
The matrix forms are given below:
isotropic
The isotropic model allows several methods of entering the coefficients for convenience. The primary method gives the Young’s modulus (\(E\)) and Poisson coefficient (\(\nu\)) which correspond to the names
young
andpoisson
respectively.(332)#\[D_{ij} = {E\over1+\nu} + {\nu E\over (1-2\nu)(1+\nu)} \delta_{ij}\]An alternate definition defines the shear modulus (\(G\) or \(\mu\)) and the bulk modulus (\(K\) or \(\kappa\)). These correspond to the coefficient names
G
ormu
, andK
orkappa
. Transverse isotropy has two directions which are equivalent. There are two ways to specify transverse elasticity parameters.Elasticity modules
Direction 1 is the longitudinal one and directions 2 and 3 are the two transverse ones. The elasticity is specified with 5 classical parameters : \(El\), \(Et\), \(nult\), \(nutt\) and \(Glt\). They define the Hooke relation such as :
(333)#\[\begin{split} \left( \begin{array}{c} \varepsilon_{11} \\ \varepsilon_{22} \\\varepsilon_{33} \\\varepsilon_{23}\\\varepsilon_{13}\\\varepsilon_{12} \end{array}\right) = {\left\lgroup\begin{matrix} \frac{1}{El}&\frac{-nult}{Et}&\frac{-nult}{Et} &0 &0 &0 \\ &\frac{1}{Et}&\frac{-nutt}{Et} &0 &0 &0 \\ & &\frac{1}{Et} &0 &0 &0 \\ &&&\frac{1+nutt}{Et}&0&0 \\ &{\rm sym}&& &\frac{1}{2Glt}&0 \\ &&& & &\frac{1}{2Glt} \\ \end{matrix} \right\rgroup } \left( \begin{array}{c} \sigma_{11} \\ \sigma_{22} \\\sigma_{33} \\\sigma_{23}\\\sigma_{13}\\\sigma_{12} \end{array}\right)\end{split}\]An old parameter named \(glt\) (instead of \(Glt\)) is defined as :
(334)#\[\sigma_{12}=glt\, \varepsilon_{12}\]whereas \(Glt\) is defined as :
(335)#\[\sigma_{12}=2\, Glt\, \varepsilon_{12}\]This old parameter is still available for compatibility with old data sets.
Matrix coefficients
The program allows the user to specify which terms in the elastic matrix will be set equal, with a tag input after the
transverse
keyword. It is best to explain this syntax through an example:(336)#\[\begin{split}D = {\left\lgroup\begin{matrix} c_{11}&c_{12}&c_{13}&0&0&0 \\ &c_{11}&c_{13}&0&0&0 \\ &&c_{33}&0&0&0 \\ &&&{1\over 2}(c_{11}-c_{12})&0&0 \\ &{\rm sym}&&&c_{55}&0 \\ &&&&&c_{55} \\ \end{matrix} \right\rgroup }\end{split}\]which is created by
**elasticity transverse
and the coefficientsc11
,c12
,c13
,c33
andc55
(or the correspondingy1111
etc.).For the moment it is only possible to work with
c11
andc22
equal instead of, for instance, equalc22
andc33
.The following relations are also given for reference in the case of \(c_{11} = c_{22}\):
(337)#\[\begin{split}\begin{aligned} c_{11} &= \frac{(1-n\nu_{zx}^2)E_{x}}{AB} \\ c_{12} &= \frac{(\nu_{xy}+n\nu_{zx}^2)E_{x}}{AB} \\ c_{13} &= \frac{\nu_{zx}E_{x}}{B} \\ c_{33} &= \frac{(1-\nu_{xy})E_{z}}{B} \\ c_{44} &= \dfrac{1}{2}(C_{11} - C_{12}) \\ c_{55} &= C_{66} = G_{xy} = G_{xz} \\ c_{xy} &= \frac{E_x}{2(1+\nu_{xy})}\\ \end{aligned} n = E_x / E_z \qquad A = 1+\nu_{xy} \qquad B = 1 - \nu_{xy} - 2n\nu_{zx}^2\end{split}\]
cubic
- (338)#\[\begin{split}D = {\left\lgroup \begin{matrix} y_{1111}&y_{1122}&y_{1122}&0&0&0 \\ &y_{1111}&y_{1122}&0&0&0 \\ &&y_{1111}&0&0&0 \\ &&&y_{1212}&0&0 \\ &{\rm sym}&&&y_{1212}&0 \\ &&&&&y_{1212} \\ \end{matrix} \right\rgroup }\end{split}\]
orthotropic
- (339)#\[\begin{split}D = {\left\lgroup \begin{matrix}y_{1111}&y_{1122}&y_{3311}&0&0&0 \\ &y_{2222}&y_{2233}&0&0&0 \\ &&y_{3333}&0&0&0 \\ &&&y_{1212}&0&0 \\ &{\rm sym}&&&y_{2323}&0 \\ &&&&&y_{3131} \\ \end{matrix}\right\rgroup }\end{split}\]
An alternative naming uses
c11
,c22
,c33
,c44
,c55
,c66
,c12
,c13
, andc23
(or their symmetric counterparts). anisotropic
- (340)#\[\begin{split}D = {\left\lgroup\begin{matrix} y_{1111}&y_{1122}&y_{1133}&y_{1112}&y_{1123}&y_{1131} \\ &y_{2222}&y_{2233}&y_{2212}&y_{2223}&y_{2231} \\ &&y_{3333}&y_{3312}&y_{3323}&y_{3331} \\ &&&y_{1212}&y_{1223}&y_{1231} \\ &{\rm sym}&&&y_{2323}&y_{2331} \\ &&&&&y_{3131} \\ \end{matrix}\right\rgroup }\end{split}\]
Example#
**elasticity isotropic
young 200000.
poisson 0.3
**elasticity cubic
y1111 162321.0
y1122 78075.0
y1212 110615.0
**elasticity
young T
200000. 0.
200000. 1000.
poisson 0.3
**elasticity transverse
El 115000.
Et 8500.
Glt 4500.
nult 0.32
nutt 0.40