LOCALIZATION2#
This localisation object evaluates the overall elastic stiffness \(\boldsymbol{L}\).
Syntax#
The syntax depends on the localization rule.
**localization
name
\(~\,~\,\) …
voigt
Using the Voigt scheme, the elastic stiffness is \(\boldsymbol{L} = 2 \mu \boldsymbol{I}\)
**localization voigt
\(~\,~\,\)mu
<double>matrix
The elastic stiffness is the Fourth-order compliance tensor \(\boldsymbol{L} = \boldsymbol{S}\)
**localization matrix
\(~\,~\,\)young
<double> \(~\,~\,\)poisson
<double>kroner
The overall elastic stiffness is \(\displaystyle{\boldsymbol{L} = \alpha (\boldsymbol{L_r} (\boldsymbol{I} - \boldsymbol{S}))}\) where \(S\) is the effective Eshelby tensor and \(\boldsymbol{L_r}\) is the elasticity matrix of the sub-volume \(r\).
**localization kroner
\(~\,~\,\)alpha
<double> \(~\,~\,\)poisson
<double> \(~\,~\,\)ratio
<double>tangente
The elastic stiffness is \(\boldsymbol{L} = A \boldsymbol{I}\):
(648)#\[{\rm where} \qquad A = \frac{2 \mu \mu_p (7 -5 \nu_p)}{\mu_p(7 -5 \nu_p)+2 \mu (4 - 5 \nu_p)}\](649)#\[{\rm and} \quad f = \frac{\sqrt{\Delta \ten{E}^p: \Delta \ten{E}^p}}{\sqrt{\Delta \ten{\sigma}: \Delta \ten{\sigma}}}, \qquad \mu_p = \frac{\mu}{1 + 2 \mu f} \qquad {\rm and} \qquad \nu_p = \frac{\nu+2\mu (1+\nu)f/3}{1+4\mu(1+\nu)f/3}\]**localization tangente
\(~\,~\,\)mu
<double> \(~\,~\,\)poisson
<double>