becker_needleman#
Description#
This model is a direct implementation of the viscoplastic porous damage model given by R. Becker and A. Needleman “Effect of Yield Surface Curvature on Necking and Failure in Porous Plastic Solids,” J. Appl. Mech. v53, 491-498 (1986).
(259)#\[\ten B = \ten \sigma - \ten X \qquad \qquad \ten B' = \tenf U:\ten B\]
(260)#\[\phi = \frac{3}{2}\frac{\ten B':\ten B'}{\sigma_F^2} +
2q_1f^*\text{cosh}\left[\frac{q_2\ten B:\ten 1}{2\sigma_F}\right] -
1 - q_1 f^{*^2} \qquad \ten n=\pder{\phi}{\ten \sigma}\]
Where \(f^*\) is a modification of the porosity \(f\) 1In the porous_plastic
behavior \(f^*\) is calculated from
\(f\) using the coefficient mechanism so
that if \(f<f_c\) \(f^*=f\) and otherwise
\(f^* = f_c + ((1/q_1-f_c)/(f_f-f_c))(f-f_c)\)
(261)#\[\Delta\lambda = \frac{(1-f)\sigma_F\Delta p}{\ten B:\ten n}\]
(262)#\[\rho = \frac{(1-b)}{1-b+b g(p)}\left[\ten B:\ten n\right]^{-1}
\left[ \frac{g'(p)(\ten B:\ten n)^2}{(1-f)\sigma_F} +
(1-f)(1-g(p))\pder{\phi}{f}(\ten 1:\ten n)
\right]\]
Rate equations
(263)#\[\dot{\ten \varepsilon}_{el} = \ten \varepsilon - \dot{\lambda}\ten n - \ten \varepsilon_{th}\]
(264)#\[\dot{p} = \epsilon_0
\left[\frac{\sigma_F}{(1-b)\sigma_o + b\sigma_o g(p)}\right]^{1/m}\]
(265)#\[\dot{f} = \dot{\lambda}(1-f)(\ten 1:\ten n)\]
(266)#\[\dot{\ten \alpha} = \dot{\lambda}\rho\ten B\]
Syntax#
***behavior becker_needleman
modifier
\(~\,\) **elasticity
<ELASTICITY>
[ **thermal_strain
<THERMAL_STRAIN>
\(~\,\) **model_coef
\(~\,~\,~\,\) coefs
q1, q2, f_c, f_f, e_dot0, b, sig0, m, eps0, C
Example#
Here is an example using coefficients from the original paper.
***behavior becker_needleman
**elasticity isotropic
young 1865.67
poisson 0.3
**model_coef
q1 2.38
q2 0.748
eps0 0.0125
e_dot0 1.e-3 % same as loading rate
sig0 1.0
b 1.0 % 1==isotropic, 0==kinematic
f_c 0.15
f_f 0.25
m 0.02 % 0.002
C 1.
***return