elastic_phasefield#
For elastic_phasefield
behaviour displacement
\(\underline{\textbf{u}}\), concentration \(c\) and order
parameter \(\phi\) are the degrees of freedom of the system. Finding
\(\phi (X, t), c (X, t), \vect u(X, t))\), \(\forall (X, t>0)\)
will be done by solving the system of equation.
The free energy density for the coupled phase field/diffusion/mechanical problem can be approximated by the Ginzburg-Landau coarse-grained free energy functional, which contains a chemical free energy density \(f_{ch}(c, \phi)\), an elastic free energy density \(f_e(\phi, c, \ten \epsilon)\) and a gradient term.
In addition to the chemical state laws, which is defined in the
phasefield_phic
behavior, the strain-stress relationship in the
homogeneous effective medium obeys Hooke’s law as follows
where \(\ten{E}\) and \(\ten \sigma\) are respectively the macroscopic strain and Cauchy stress quantities.
The effective elasticity tensor \(\ten{\ten C}\) and the effective
eigenstrain \(\ten{E}^\star\) due to phase transformation are presented in
the <HOMOGENIZATION>
section.
Stored Variables
prefix |
size |
description |
default |
---|---|---|---|
|
T-2 |
Cauchy stress |
yes |
|
T-2 |
Total (small deformation) strain |
yes |
|
T-2 |
Elastic strain |
yes |
|
T-2 |
Effective eigenstsrain |
no |
|
V |
Concentration gradient |
yes |
|
V |
Concentration flux |
yes |
|
V |
Order parameter gradient |
yes |
|
V |
Microstress |
yes |
|
S |
Internal microforce |
yes |
|
S |
the concentration |
yes |
|
S |
Order parameter |
yes |
***behavior
elastic_phasefield
\(~\,\) **energy
<ENERGY>
\(~\,~\,\) ...
\(~\,\) **kinetics
\(~\,~\,\) *mobility
COEFFICIENT
\(~\,\) **chemical_interpolating_function
val
\(~\,\) **mechanical_interpolating_function
val
\(~\,\) **homogenization
<HOMOGENIZATION>
\(~\,\) **phase1
\(~\,~\,\) *elasticity1
<ELASTICITY>
\(~\,~\,\) ...
\(~\,~\,\) *eigen_coeff1
double
\(~\,\) [*delta1
double ]
\(~\,\) [*c_ref1
double ]
\(~\,\) **phase2
\(~\,~\,\) *elasticity2
<ELASTICITY>
\(~\,~\,\) ...
\(~\,~\,\) *eigen_coeff2
double
\(~\,\) [*delta2
double ]
\(~\,\) [*c_ref2
double ]
**mechanical_interpolating_function
Defines the polynomial degree of interpolating function. Tree choices are availables.
CODE
DESCRIPTION
\(0\)
\(h_u(\phi) = \phi\)
\(1\)
\(h_u(\phi) = \phi^2 ( 3 - 2 \phi)\)
\(2\)
\(h_u(\phi) = \phi^3 ( 6 \phi^2 - 15 \phi + 10)\)
**homogenization
This option will be detailed in the
<HOMOGENIZATION>
section.**phase1
Definition of the material elastic parameters and eigenstrain induced by variation of concentration.
**phase2
Identical as
**phase1
The eigenstrain in the phase \(i\) is defined as follow
***behavior elastic_phasefield
**energy kim
*phase1
c1 0.7
b1 0.0
k1 1.
D1 0.1
*phase2
c2 0.3
b2 0.0
k2 1.
D2 0.1
*interface
energy 1.
thickness 0.25
zeta 0.05
ENER 0.5
**kinetics
*mobility 1.
**chemical_interpolating_function 1.
**mechanical_interpolating_function 1.
**homogenization Khachaturyan
**phase1
*elasticity1
young 70000.
poisson 0.3
*eigen_coeff1 0.000
*delta1 0.0015
*c_ref1 0.
**phase2
*elasticity2
young 70000.
poisson 0.3
*eigen_coeff2 0.000
*delta2 0.0015
*c_ref2 0.
***return