**process adiabatic_temperature#
Description#
This post-processor computes the adiabatic temperature rise from plastic work (for an associated \(J_2\)-plasticity):
(13)#\[ \rho c_\varepsilon \dfrac{dT}{dt} = \sigma_{eq} \dot{\varepsilon}\,\!^p_{eq}.\]
where \(\rho\) is the mass density, \(c_\varepsilon\) is the specific heat capacity, \(\sigma_{eq}\) is the von Mises stress, and \(\varepsilon^p_{eq}\) is the equivalent plastic strain (\(\dot{\varepsilon}\,\!^p_{eq}=\sqrt{\frac{2}{3}\dot{\varepsilon}\,\!^p:\dot{\varepsilon}\,\!^p}\))
Eq. (13) is integrated using a trapezoidal rule. The output of this post-processor is \(\rho c_p \dfrac{dT}{dt}\).
Syntax#
**process adiabatic_temperature
\(~\,\) *stress stress
\(~\,\) *strain eq_strain
*stressstressStress tensor.
*straineq_strainequivalent plastic strain.
Example#
***local_post_processing
**file integ
**elset ALL_ELEMENT
**process adiabatic_temperature
*stress sig
*strain ep_eq