**process adiabatic_temperature#

Description#

This post-processor computes the adiabatic temperature rise from plastic work (for an associated \(J_2\)-plasticity):

(13)#\[ \rho c_\varepsilon \dfrac{dT}{dt} = \sigma_{eq} \dot{\varepsilon}\,\!^p_{eq}.\]

where \(\rho\) is the mass density, \(c_\varepsilon\) is the specific heat capacity, \(\sigma_{eq}\) is the von Mises stress, and \(\varepsilon^p_{eq}\) is the equivalent plastic strain (\(\dot{\varepsilon}\,\!^p_{eq}=\sqrt{\frac{2}{3}\dot{\varepsilon}\,\!^p:\dot{\varepsilon}\,\!^p}\))

Eq. (13) is integrated using a trapezoidal rule. The output of this post-processor is \(\rho c_p \dfrac{dT}{dt}\).

Syntax#

**process adiabatic_temperature \(~\,\) *stress stress \(~\,\) *strain eq_strain

*stress stress

Stress tensor.

*strain eq_strain

equivalent plastic strain.

Example#

***local_post_processing
 **file integ
 **elset ALL_ELEMENT
 **process adiabatic_temperature
  *stress sig
  *strain ep_eq