**process tsai_wu_failure#
Description#
This post-processing computes the failure index using the Tsai-Wu failure criterion. The failure index is given by
where \(f_i\) and \(F_{ij}\) are material coefficients, and \(\sigma_k=\{\sigma_{11},\sigma_{22},\sigma_{33},\sigma_{12},\sigma_{23},\sigma_{33}\}\).
The Tsai–Wu criterion predicts failure when the failure index reaches or exceeds 1.
Syntax#
**process tsai_wu_failure
\(~\,\) *var var_name
[ *output oname ]
where var_name is the stress tensor, and oname is the name of the failure index (Default TWU).
Outputs:
oname: the failure index.
oname
_2: indicator function ( 1 if failure index \(>\) 1 else 0).oname
_3: step function (0 if index \(<\) 0.5, 0.5 if index \(\leq\) 1, else 1).oname
_C: breakdown of the contributing terms, grouped by stress components as in eq. (24). For example, if the value is 3, it means that the contributions from \(\sigma_{11}\), \(\sigma_{22}\), and \(\sigma_{33}\) together are still below 1, i.e. failure has not yet been triggered by these terms.
Example#
***local_post_processing
**file integ
**elset ALL_ELEMENT
**material_file tsai.dat
**process tsai_wu_failure
*var sig
The coefficients \(f_i\) and \(F_{ij}\) should be given as
% tsai.dat
***post_processing_data
**process tsai_wu_failure
F11 1.489e-11
F22 2.54e-9
F66 4.238e-9
F12 -9.72e-11
f1 2.65e-6
f2 9.13e-5
***return